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Abstract

The zero-beta rate is an important concept in asset pricing due to its implications
for the security market line, beta anomaly, risk-free rate, etc. This paper revisits the
estimation of the zero-beta rate and argues that existing methods produce high and
volatile zero-beta rates arising from two channels: model misspecification and error-in-
variables. Any model misspecification leads to a non-uniqueness of the zero-beta rate.
Measurement errors in betas increase noise in the estimation. Simulation analysis shows
that both channels are quantitatively important for increasing the mean and volatility
of the estimated zero-beta rate. In addition, I propose a new perspective on evaluating
empirical factor models based on the theoretical result that a correctly specified model
should feature a unique zero-beta rate. The new tests show that prominent factor
models in the literature (e.g., Fama-French, q-factors, IPCA models) are misspecified.

1. Introduction

The zero-beta rate is defined as the expected return of an asset portfolio that is orthogonal

(or zero-beta) with respect to the stochastic discount factor (SDF). This has always been an

important topic in asset pricing studies. Going back to the Black (1972) version of CAPM

without risk-free borrowing or lending, the expected return uncorrelated with the market

portfolio (the zero-beta rate in CAPM) is much higher than the Treasury bill yield, indicating

a much flatter security market line. The zero-beta rate is also related to the beta anomaly,

which refers to the low (high) abnormal returns of stocks with high (low) beta (Frazzini

and Pedersen, 2014; Hong and Sraer, 2016; Bali et al., 2017; etc.). Additionally, since the

zero-beta rate is orthogonal to the SDF, it may naturally be interpreted as the risk-free rate,

which can then be used to infer the US Treasury convenience yields1 and explain the equity

risk premium puzzle (Di Tella et al., 2023).

∗Rong Wang: Ph.D. candidate at the Fuqua School of Business, Duke University (rw196@duke.edu). I
thank Ravi Bansal, Anna Cieslak, Nuno Clara, John Coleman, David Hsieh, and Paymon Khorrami for their
guidance and valuable comments.

1The US Treasury convenience yield is defined as the difference between the risk-free rate without con-
venience benefits and the US Treasury yield.
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Since the zero-beta rate is unobserved, the literature has generally proposed two estima-

tion methods. The first method is the two-stage Fama-MacBeth process, which runs time-

series regressions to estimate the risk loadings (betas) followed by running cross-sectional

regressions for each period. The zero-beta rate can be estimated using the intercept term

in the cross-sectional regressions. The second method is proposed by Di Tella et al. (2023)

and I refer to it as the zero-beta-portfolio approach. It analytically calculates the portfolio

weights for the minimum-variance zero-beta portfolio, where betas are estimated from time-

series regressions. The zero-beta rate is then estimated by predicting the expected return of

the minimum-variance zero-beta portfolio with a set of macroeconomic variables. Using eight

prominent factor models, I confirm that both methods produce high and volatile 1-month

zero-beta rates in estimation compared to the 1-month Treasury bill yield, consistent with

the evidence in the literature. Specifically, the Fama-MacBeth approach produces a zero-

beta rate that is approximately 3 times higher and 20 times more volatile than the Treasury

bill yield. The zero-beta-portfolio approach produces a zero-beta rate that is approximately

3 times higher and 2 times more volatile than the Treasury yield.

In this paper, I revisit the two approaches and assess the credibility of the estimation. I

show that model specification and errors-in-variables are important factors contributing to

the high level and volatility of the estimated zero-beta rate. I establish this argument in

three steps.

First, I emphasize a theoretical result adapted from Roll (1980) regarding factor models:

A correctly specified factor model should feature a unique zero-beta rate, whereas a misspec-

ified model leads to multiplicity or indeterminacy of the zero-beta rate2. The multiplicity of

the zero-beta rate can theoretically explain why it is high and volatile in estimation. Specif-

ically, applying the Fama-MacBeth approach with misspecified factor models amounts to

randomly selecting a value from an indeterminate set of zero-beta rates period by period.

Since there are no restrictions on the time-series dimension due to the period-by-period

cross-sectional regressions, the volatility of the estimated zero-beta rate can be very high.

For comparison, the zero-beta-portfolio approach adds a time-series restriction by focusing

on the minimum-variance zero-beta portfolio. This can be the reason why it produces much

less volatile zero-beta rates than the Fama-MacBeth approach in estimation. However, the

estimated zero-beta rate may still be different from the true risk-free rate owing to multi-

plicity caused by model misspecification.

Second, I develop new statistical tests of model misspecification that match the two

2The uniqueness of the zero-beta rate does not mean the zero-beta rate is constant over time. Instead,
it means that the conditional mean of all zero-beta portfolios that are orthogonal to the SDF should be
equalized. Hence, there is a unique time series of the zero-beta rate.
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estimation methods (the Fama-MacBeth and zero-beta-portfolio approaches). These tests

are based on the theoretical result that a correctly specified model implies a unique zero-beta

rate. My testing results show that all eight prominent factor models studied in this paper

are misspecified as they do not feature a unique zero-beta rate. Therefore, the theory that

connects model misspecification with the multiplicity of the zero-beta rate is empirically

relevant in explaining the high and volatile estimated zero-beta rate.

Third, I quantify the effect of model misspecification in simulation analysis. Because

both estimation approaches are potentially subject to estimation errors in risk loadings (be-

tas), I also account for the errors-in-variables (EIV) problem in the simulation. To start

with, I apply both the Fama-MacBeth approach and the zero-beta-portfolio approach to

the benchmark model that is correctly specified and without errors-in-variables. I find that

both approaches are able to recover the true unobserved risk-free rate artificially created in

simulation. In the meantime, the benchmark model passes my new tests for model misspec-

ification. This evidence implies that the two approaches and the new tests are statistically

valid. Next, I perform two exercises: (i) I increase the magnitude of model misspecification

while keeping zero errors-in-variables and (ii) I increase the magnitude of errors-in-variables

while keeping the correct model. These exercises separately investigate the quantitative

effects of model misspecification and errors-in-variables. I show that both channels are non-

trivial in increasing the level and volatility of the estimated zero-beta rate. In the second

exercise, in particular, the correct model will not be rejected as I increase the magnitude

of errors-in-variables, further validating the proposed tests. Finally, I examine these two

channels together and find that model misspecification is a quantitatively dominant factor

contributing to the high level and volatility of the estimated zero-beta rate. Comparing

the two approaches, the zero-beta-portfolio approach proposed by Di Tella et al. (2023) is

less prone to both model misspecification and errors-in-variables than the Fam-MacBeth

approach. While the literature is indeed making progress on the estimation method, I argue

that it is still too early to interpret the estimated zero-beta rate as the true unobserved

risk-free rate.

During my inspection of the estimated zero-beta rate, I propose two new tests for factor

models based on the idea that a correctly specified model should feature a unique zero-

beta rate. This constitutes a new perspective on evaluating factor models. Conventionally,

researchers use the Fama-MacBeth process to test factor models, where the cross-sectional R2

is a common measure of goodness of fit. Researchers typically draw a scatter plot comparing

the model-predicted expected (excess) return and the actual expected (excess) return. If

a factor model has a high cross-sectional R2 and the testing portfolios are located around

the 45-degree line in the scatter plot, one would declare good performance for this model.
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Based on this evidence, the literature usually proceeds to conduct inferences about factor

risk premia, perform out-of-sample analyses, discuss the implications of risk pricing, etc.,

assuming the model is correctly specified. However, I believe that this literature protocol

warrants further examination. Having a high cross-sectional R2 or a lining-up scatter plot

does not mean the model is correctly specified. My new perspective is broader and powerful:

the SDF is correctly specified if and only if the ZBR is unique. This is a much stricter

requirement than conventional ones. The conventional Fama-MacBeth test can only tell us

the general power of the model in pricing the cross-section of stock returns. And it can test

whether a particular factor represents a source of systematic risk. However, the news tests

for model misspecification focus on whether the proposed factor model completely captures

all the systematic risks.

Whether this new perspective is relevant depends on the purpose of the study. In con-

ventional asset pricing studies, we aim to understand whether one particular factor is priced

in the cross-section without needing to identify all risk factors. In this case, conventional

tests are sufficient to provide an answer. In the zero-beta rate literature, however, construct-

ing the zero-beta rate essentially requires us to rule out all risk sources, and therefore the

new perspective is an important consideration before selecting factor models. Without this

stricter requirement, we may fail to reject incorrect factor models and thus produce flawed

estimates. In summary, I advocate that researchers and practitioners take a comprehensive

and rigorous view of empirical factor models. I argue for the importance of evaluating models

with risky assets alone and leveraging my tests based on the uniqueness of zero-beta rate.

I also apply this new perspective to an emerging literature that uses machine-learning

techniques in asset pricing to deal with high dimensional asset characteristics (Fan et al.,

2016; Kelly et al., 2019; Lettau and Pelger, 2020; Kozak et al., 2020; Chen et al., 2023;

etc.). This new literature hopes to better approximate the SDF by entertaining the possi-

bility of latent factors, nonlinear models, and large datasets of test assets. For example, the

instrumented PCA (IPCA) approach developed by Kelly et al. (2019) performs dimension

reduction in the characteristics space by modeling risk loadings as functions of firm char-

acteristics. An SDF constructed using five principal component latent factors is shown to

price the cross-section of returns reasonably well. Given its sucess and flexibility, this new

literature may be ideally suited to tackle the question of the zero-beta rate extraction. I

expore this possibility in the context of the IPCA approach. First, I run the IPCA approach

using gross returns instead of excess returns as the true zero-beta rate is unobserved. In this

setting, the zero-beta rate in IPCA models are statistically indifferent from zero because the

latent factors and time-varying risk loadings are sufficient to explain the variations in the

cross-section of gross returns. Next, I manually construct excess returns with random zero-
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beta rates. No matter what the zero-beta rate is, IPCA will eventually produce some latent

factors and time-varying betas that nicely price the cross-section of the constructed excess

returns. Therefore, IPCA models are essentially inconsistent with a theoretically unique

zero-beta rate.

This paper contributes directly to the empirical literature on the estimation of the zero-

beta rate (Black, 1972; Black et al., 1972; Frazzini and Pedersen, 2014; Hong and Sraer, 2016;

Bali et al., 2017; Di Tella et al., 2023.). I investigate these two estimation methods and show

that model misspecification and errors-in-variables are two crucial aspects that lead to the

high level and volatility of the zero-beta rate. Hence, the implications of the zero-beta rate

for the security market line, beta anomaly, risk-free rate, Treasury convenience yield, etc.,

may need to be reconsidered.

I also relate to the literature on testing empirical asset pricing models (Black et al., 1972;

Fama and MacBeth, 1973; etc.). Conventional testing relies heavily on the cross-sectional R2.

Kan et al. (2013) develops R2-based model misspecification tests recognizing the sampling

uncertainty of the cross-sectional R2. The model misspecification in Kan et al. (2013) is

an empirical concept that refers to the nonzero aggregate pricing errors (sum of squares of

residuals) in the cross-sectional regression. I theoretically link model misspecification with

the uniqueness of the zero-beta rate. I contribute to this literature by proposing a new

perspective on evaluating factor models.

The remainder of this paper is structured as follows. Section 2 describes existing methods

to estimate the zero-beta rate. Section 3 demonstrates the role of model misspecification and

errors-in-variables (EIV) in the level and volatility of the estimated zero-beta rate. Section

4 proposes a new perspective on evaluating factor models. Section 5 concludes.

2. Estimating the Zero-Beta Rate

There are two ways to estimate the zero-beta rate in the literature. The first one is the

traditional two-stage Fama-MacBeth approach commonly used in empirical asset pricing.

The second one is proposed by Di Tella et al. (2023), which I call the zero-beta-portfolio

approach. This section reviews the above two approaches using eight prominent factor

models that are popular in the literature. Table 1 lists the 8 factor models studied in this

paper. In all of the models, the estimated zero-beta rate tends to be much higher and more

volatile than the US Treasury yield, which is typically used as a proxy for the zero-beta rate.

5



Table 1: Factor Models Studied

Factors Labels Papers

MRP CAPM Sharpe (1964), Lintner (1965)

MRP, CG-NDG, CG-DG D-CCAPM Breeden (1979), Yogo (2006)

MRP, SMB, HML FF3 Fama and French (1993)

MRP, SMB, HML, RMW,
CMA, UMD, BAB

FF6+BAB
Fama and French (2018)
Frazzini and Pedersen (2014)

MRP, ME, IA, ROE, EG Q5 Hou, Mo, Xue, and Zhang (2021)

MRP, SMB, HML, LIQ LIQ Pástor and Stambaugh (2003)

MRP, SMB, DUR DUR Gormsen and Lazarus (2023)

MRP, SMB, HML,INM INM He, Kelly, and Manela (2017)

Notes: This table lists 8 prominent factor models studied in this paper.

2.1. The Fama-MacBeth Approach

The two-stage Fama-MacBeth process (Fama and MacBeth, 1973) is one of the most

influential and practical tools in the empirical asset pricing literature. It is widely used to

evaluate factor models. The first step runs time series regressions for each test asset to

estimate the risk loadings (betas), and the second step runs cross-sectional regressions to

estimate the factor risk premia. Using the Fama-MacBeth process, models are usually tested

with excess asset returns, where the Treasury yield is used as a proxy for the zero-beta rate.

In this paper, however, I will relax the constraint that the zero-beta rate equals the Treasury

yield because the ultimate goal is to estimate the unobserved zero-beta rate. In other words,

I proceed with the specification that there does not exist a traded risk-free asset (Black,

1972)3.

In the first step, I run the following time series regressions for each test asset:

Ri,t+1 = αi + βM,iRM,t+1 +
K∑
k=2

βk,ifk,t+1 + εi,t+1 (1)

where Ri,t+1 is the gross return for test asset i, RM,t+1 is the gross market return, and fk,t+1

are other excess return factors constructed using long-short portfolios. The market return is

3Precisely speaking, all traded risk-free assets have additional non-pecuniary “convenience” benefits so
that they are not suited for testing factor models.
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separately described in the equation because the market factor should have been the market

excess return with respect to the zero-beta rate. Since I do not observe the zero-beta rate, I

have to use the gross asset return and the gross market return on both sides of the equation.

The other factors are zero-investment long-short portfolios that do not explicitly involve the

zero-beta rate. Using the estimated risk loadings (betas), I run the following cross-sectional

regressions at each date as the second step:

Ri = rz + βiλ+ ϵi (2)

where Ri’s are the gross returns for all test assets and βi’s are the estimated betas from the

first step. This gives us the estimate of the zero-beta rate, r̂z, for each date.

In Figure 1, the blue line shows the estimated zero-beta rate using the Fama-MacBeth

approach in the FF6+BAB model. The annualized mean and standard deviation of the

zero-beta rate is 8.8% and 57.7%, respectively. As a comparison, the red line shows the

1-month Treasury bill yield from Kenneth French’s website, which has an annualized mean

of 4.4% and an annualized standard deviation of 3.2%. Surprisingly, the estimated zero-beta

rate is 2.0 times higher in level and 18.1 times higher in volatility compared to the Treasury

yield.

Appendix A.1 reviews all 8 factor models and describes the data, sample period, and test

assets. Throughout the main text, I only report the empirical results using the FF6+BAB

factor model. The estimated zero-beta rates in the other 7 factor models are very similar

and are reported in Appendix A.2. Summarizing over all the 8 models, the zero-beta rate

estimated by Fama-MacBeth is on average 3.0 times higher in level and 18.2 times more

volatile than the Treasury yield. Figure A.1 shows the estimated zero-beta rate in all 8

factor models. Table A.1 reports the mean and standard deviations for each zero-beta rate

series and shows that the correlation of estimated zero-beta rates across all 8 models is on

average 0.57. In summary, the high level and high volatility of the estimated zero-beta rate

is ubiquitous in all prominent factor models.

Notice that in the first step of the Fama-MacBeth approach, equation (1) uses the gross

returns (Ri,t+1 and RM,t+1) on both sides of the regression while the other factors (fk,t+1)

are excess returns. To alleviate the concern of inconsistent return units in the regression,

Appendix A.3 provides an iterative Fama-MacBeth procedure to estimate the zero-beta rate.

Briefly speaking, I initially guess a zero-beta rate and run regression (1) with excess asset

returns and excess market returns. Next, I update the zero-beta rate using regression (2).

Finally, I iterate the previous two steps until the zero-beta rate converges or until the beta

estimates converge. Appendix A.3 shows that this iterative procedure does not essentially

affect the results.
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Figure. 1. Estimated Zero-Beta Rate (Fama-MacBeth)
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Notes: This figure shows the monthly time series of the zero-beta rate estimated using the
Fama-MacBeth approach in the FF6+BAB model from July 1963 to December 2023, in monthly
percentages. The blue line is the estimated zero-beta rate. The red line is the 1-month US
Treasury bill yield.

2.2. The Zero-Beta-Portfolio Approach

Di Tella et al. (2023) (hereafter, DHKW) proposes an innovative method to estimate the

zero-beta rate. The zero-beta rate is defined as the expected return of a zero-beta portfolio,

which is zero-beta with respect to the risk factors or orthogonal to the stochastic discount

factor. Directly motivated by this definition, the authors find the minimum-variance zero-

beta portfolio and calculate its expected return by projecting the realized return onto a set

of macroeconomic predictors. An assumption underlying this process is that the zero-beta

rate is a linear function of a set of macroeconomic predictors: rz,t = ξYt, where rz,t is the

zero-beta rate and Yt is a set of macroeconomic variables. The estimation algorithm is as

follows:

i. Guess the time series of the zero-beta rate, denoted as r
(0)
z,t (I use the 1-month Treasury

yield as the initial guess).

ii. Run the following time series regression for each test asset to estimate the betas:

Ri,t+1 − r
(0)
z,t = αi + βM,i

(
RM,t+1 − r

(0)
z,t

)
+

K∑
k=2

βk,ifk,t+1 + εi,t+1 (3)

iii. Estimate the variance-covariance matrix of the test assets, ΣR, using a non-linear
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shrinkage method developed by Ledoit and Wolf (2017) and Ledoit and Wolf (2020)4.

iv. Construct the portfolio weights of the minimum-variance zero-beta portfolio using the

following analytical formula:

ω = Σ−1
R

[
ι β

]([ ι′
β′

]
Σ−1

R

[
ι β

])− [
1

0⃗

]
(4)

where ω is an N × 1 vector of portfolio weights, β is an N ×K matrix of risk loading

estimated in step ii, 0⃗ is a K × 1 vector of zeros, and ι is an N × 1 vector of ones. N

is the number of asset returns and K is the number of factors. The proof of equation

(4) is in Appendix B.1.

v. The realized return of the minimum-variance zero-beta portfolio is Rz,t+1 = ω′Rt+1. To

calculate the expected return, I project the realized return onto a set of macroeconomic

predictors, Yt, with an OLS regression:

Rz,t+1 = ω′Rt+1 = ξ̂Yt + εt+1 (5)

where the fitted value r
(1)
z,t ≡ ξ̂Yt estimate the zero-beta rate.

vi. Iterate steps i to v until the zero-beta rate rz,t converges.

In the original DHKW paper, their main specification uses seven factors: the five equity

factors of Fama and French (2015) and the bond factor and the default factor of Fama and

French (1993)5. The main macroeconomic predictors used in DHKW include the 1-month

Treasury bill yield, the rolling average of the previous twelve-month inflation, the term spread

(10-year minus 3-month Treasury yields), the excess bond premium (EBP) of Gilchrist and

Zakraǰsek (2012), the unemployment rate, and a constant term. The authors also show that

their results are robust to including different factors and predictors.

In this paper, I follow DHKW’s zero-portfolio-approach using the 8 prominent factor mod-

els for consistency. Due to data availability6, I replace the excess bond premium with two

additional predictors: the CAPE (Cyclical-adjusted price-to-earnings ratio) and the corpo-

rate bond spread7. As in the original paper, including more predictors does not significantly

change the estimation results.

4The Matlab code for an analytical shrinkage estimator can be downloaded from Michael Wolf’s website.
5Bond factor: the return of a 6 to 10-year Treasury bond portfolio over a 1-month Treasury bill. Default

factor: the return of long-term corporate bonds over long-term Treasury bonds
6The excess bond premium (EBP) of Gilchrist and Zakraǰsek (2012) is only available from January 1973,

while my data samples for different factor models started between July 1963 and January 1970.
7Difference between the Moody’s seasoned BAA corporate bond yields and Moody’s seasoned AAA

corporate bond yields.
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Figure. 2. Estimated Zero-Beta Rate (DHKW)
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Notes: This figure shows the monthly time series of the zero-beta rate estimated using the
zero-beta-portfolio approach from DHKW in the FF6+BAB model from July 1963 to December
2023, in monthly percentages. The blue line is the estimated zero-beta rate. The red line is the
1-month US Treasury bill yield.

In Figure 2, the blue line shows the estimated zero-beta rate using the zero-beta-portfolio

approach from DHKW in the FF6+BAB model. The annualized mean and standard devi-

ation of the zero-beta rate is 11.2% and 6.0%, respectively. For comparison, the red line

shows the 1-month Treasury bill yield from Kenneth French’s website, which has an annual-

ized mean of 4.4% and an annualized standard deviation of 3.2%. The estimated zero-beta

rate is 2.6 times higher in level and 1.9 times higher in volatility compared to the Treasury

yield. Table A.4 reports the point estimates and t-statistics for ξ̂ in the predictive regression

Rz,t+1 = ξ̂Yt + εt+1.

The estimated zero-beta rates in the other 7 factor models are very similar and are

reported in Appendix A.4. Summarizing over all the 8 models, the zero-beta rate estimated

by DHKW is on average 2.6 times higher in level and 1.9 times more volatile than the

Treasury yield. Figure A.3 shows the estimated zero-beta rate in all 8 factor models. Table

A.3 reports the mean and standard deviations for each zero-beta rate series and shows that

the correlation of estimated zero-beta rates across the 8 models is on average 0.96. Hence,

I confirm the DHKW result that the estimated zero-beta rate is quite robust to different

specifications of factor models. In summary, the high level and high volatility of the estimated

zero-beta rate are ubiquitous in all prominent factor models.

The estimated zero-beta rate being higher and more volatile than the Treasury yield

is consistent across two different approaches. However, the zero-beta-portfolio approach
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from DHKW produces much less volatile zero-beta rates than the Fama-MacBeth approach.

In section 3, I will discuss the underlying reasons why there may be a big difference in the

volatility between the two approaches and explain why the zero-beta-portfolio approach from

DHKW makes good progress. In the meantime, I am going to argue that both methods are

nontrivially subject to model misspecification and errors-in-variables, and thus researchers

and practitioners should be cautious about both of them.

3. Model Misspecification and Errors-in-Variables

In the previous section, I followed two existing approaches in the literature to replicate

the estimation of the zero-beta rate. The Fama-MacBeth approach produces a zero-beta rate

that is approximately 3 times higher and 20 times more volatile than the Treasury yield. The

zero-beta-portfolio approach from DHKW produces a zero-beta rate that is approximately

3 times higher and only around 2 times more volatile than the Treasury yield. In the second

approach, DHKW claims that the estimated zero-beta rate is the correct intertemporal price

of consumption, and it can be used as a proxy for the risk-free rate. Based on the evidence in

DHKW, Di Tella et al. (2024) proceeds to provide a theory that can rationalize the high level

and volatility of the zero-beta rate. This section takes a step back and asks a fundamental

question about the existing evidence on the zero-beta rate: Is the zero-beta rate truly high

and volatile or are the methods in trouble?

I hypothesize that both the Fama-MacBeth approach and the zero-beta-portfolio ap-

proach from DHKW tend to generate high and volatile zero-beta-rate estimates arising from

two channels: model misspecification and errors-in-variables (EIV). To validate this hypoth-

esis, I will take the following three logical steps. Section 3.1 theoretically shows that the

zero-beta rate should be unique if the model is correctly specified. On the contrary, if the

model is misspecified, the zero-beta rate is indeterminate. This multiplicity may lead to

the high level and volatility of the estimated zero-beta rate. In section 3.2, I propose two

tests based on the uniqueness of the zero-beta rate and show that the 8 prominent factor

models are misspecified since they all fail to feature a unique zero-beta rate. Therefore,

model misspecification could be a crucial candidate for explaining the level and volatility of

the estimated zero-beta rate in section 2. Finally, section 3.3 performs simulation analyses,

quantifying the effects of model misspecification on the estimation of the zero-beta rate. In

the meantime, since both approaches potentially suffer from the issue of errors-in-variables

(EIV), the simulation is also able to compare the quantitative effects of both channels.
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3.1. Uniqueness of the Zero-Beta Rate

Roll (1980) discusses the zero-beta portfolios (orthogonal portfolios) in the CAPM envi-

ronment. It proves that the zero-beta rate can take all levels if the market portfolio is not

mean-variance efficient. This argument is generally correct for any multi-factor model. As

an extension to Roll (1980), I emphasize the following Proposition about the uniqueness of

the zero-beta rate for any factor model (The complete proof is in Appendix B.2).

Proposition 1. The uniqueness of the zero-beta rate depends on whether the factor model

is correctly specified.

(i) If the factor model is correctly specified (no model misspecification), then the zero-beta

rate is uniquely pinned down by the factors.

(ii) If the factor model is misspecified, then the zero-beta rate is indeterminate and it can

take any values.

The intuition is as follows. A factor model defines what systematic risks are in the

universe of traded assets by specifying risk factors. Then, it tells us what investors should

be compensated for bearing these systematic risks. If a factor model correctly specifies the

risk factors underlying all traded assets, it is able to uniquely recover the shadow return for

a hypothetically risk-free asset even if it is not traded. This is the rate of return investors

will earn if they are not exposed to any of the risk factors in the financial market. However,

if a particular factor is misspecified meaning that it does not correctly specify the true risk

factors, it recovers different levels of zero-beta rates because the corresponding zero-beta

portfolios may still be exposed to different levels of omitted risks.

Let us further examine the nature of model misspecification and its effect on the zero-beta

rate in the view of Proposition 1.(ii). First of all, factor model theories suggest that any

multi-factor model can be written as a single-factor model where the single factor portfolio is

on the mean-variance frontier. Note that the general formula for a factor model is E [R]−rz =

β · λ = Cov (R,F ) Σ−1
F · λ where β ≡ Cov (R,F ) Σ−1

F is the risk loading. Then, the factor

model can also be written as (the proof is in Appendix B.3):

E [Ri]− rz = β̃λ̃ ≡ Cov(Ri, R̃)

V ar(R̃)

(
E[R̃]− rz

)
(6)

where R̃ ≡ λ′Σ−1
F F is the single factor portfolio and E[R̃]− rz is the factor risk premium.

This link between multi-factor models and a single-factor model allows us to understand

Proposition 1 in the traditional mean-standard deviation graph for any multi-factor models.

A correctly specified factor model implies a constructed single factor R̃ on the mean-variance
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Figure. 3. The Mean-Variance Frontier and Zero-Beta Frontiers

P

P

Mean-Variance Frontier

Portfolios Orthogonal to P

Notes: This figure shows the mean-variance frontier and the orthogonal portfolio (zero-beta
portfolio) sets for two assets, P ∗ and P , in the mean-standard deviation space. P ∗ is on the
mean-variance frontier. P is within the mean-variance frontier and it has the same mean as P ∗.
The blue horizontal line represents the orthogonal set with respect to P ∗. The shaded area
represents the orthogonal set with respect to P .

frontier. On the contrary, model misspecification indicates that the constructed single return

factor R̃ is located within the mean-variance frontier. Interpreting the model misspecification

from this mean-variance-frontier angle facilitates the discussion and allows us to borrow

insights from Roll (1980). To avoid repetition, I will not prove the following statements

because all the proofs can be found in Roll (1980).

• As is shown in Figure 3, portfolios orthogonal to a mean-variance efficient portfolio P ∗

are located on a horizontal ray (shown in blue in the figure) inside the mean-variance

frontier. They have the same expected return—the zero-beta rate. One of them is on

the mean-variance frontier, ZP ∗ .

• Portfolios orthogonal to an inefficient portfolio P (see Figure 3) are located inside a

half hyperbola in the mean-standard deviation space (shown in the shaded area in

the figure). Hence, the zero-beta rate is indeterminate—there are infinite values of

zero-beta rates. If E [P ] = E [P ∗], then this hyperbola is tangent to the mean-variance

frontier at the point ZP ∗ . The minimum variance zero-beta portfolio Zp falls inside the

mean-variance frontier.
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Now, I can develop intuition about the level and volatility of the zero-beta rate estimated

using the two approaches described in section 2. In the Fama-MacBeth approach, the first-

stage time series regressions estimate the betas, and the second stage essentially finds the

expected return of the zero-beta portfolio through cross-sectional regressions. However, the

cross-sectional regressions are run period-by-period, without imposing any restrictions from

the time series perspective. Therefore, once the factor model is misspecified, I may end up

randomly picking up the zero-beta portfolio from the shaded area shown in Figure 3 period

by period. This may explain the high level and extremely high volatility of the estimated

zero-beta rate if the factor model is misspecified. In the zero-beta-portfolio approach from

DHKW, I look for the zero-beta portfolio of minimum variance (ZP in Figure 3). This vari-

ance minimization problem introduces time series constraints and thus significantly reduces

the volatility of the estimated zero-beta rate. However, this approach may still produce a

high and volatile zero-beta rate if the factor model is misspecified.

In summary, model misspecification generates the multiplicity (or indeterminacy) of the

zero-beta rate, which could potentially lead to the high level and volatility of the estimation

due to the nature of the two approaches. In addition, since both approaches rely on the

estimation of risk loadings (betas) as a building rock, it is reasonable to be concerned about

the issue of errors-in-variables. In the simulation analysis of section 3.3, I will take into

consideration both channels: model misspecification and errors-in-variables.

3.2. Testing for the Uniqueness of the Zero-Beta Rate

Section 3.1 theoretically connects model misspecification with the multiplicity of the zero-

beta rate, which may potentially provide an explanation of the high level and volatility of the

estimated zero-beta rate reported in section 2. To establish this logic, I would like to assess

where there exists model misspecification in the 8 prominent factor models I studied. In this

section, I propose two factor model tests that focus on the uniqueness of the zero-beta rate. I

show that all the 8 prominent models are misspecified in the sense that they do not feature a

unique zero-beta rate. It may sound astonishing to claim that the well-acknowledged, widely

used factor models are misspecified. After all, they are popular in the literature because they

price the cross-section of stock returns pretty well according to some conventional tests. I

will further discuss this new perspective of testing factor models based on the uniqueness of

the zero-beta rate in section 4.

Test 1: A Time Series Regression Test

The first test works with the Fama-MacBeth time series regressions. Although the time

series regressions are run asset by asset, the uniqueness of the zero-beta rate should im-
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pose restrictions that connect all the separate regressions. Recall that theories suggest the

traditional time series regression with excess returns has the following form:

Ri,t+1 − rz,t = βM,i (RM,t+1 − rz,t) +
K∑
j=2

βj,ifj,t+1 + εi,t+1 (7)

where rz,t is the unobserved zero-beta rate that appears on both sides of the regression. Since

I do not observe the zero-beta rate, I have to run regression (1) with gross asset returns and

gross market returns mentioned in section 2.1. Rearranging equation (7) I get:

Ri,t+1 = (1− βM,i)rz,t + βM,iRM,t+1 +
K∑
j=2

βj,ifj,t+1 + εi,t+1 (8)

If the factor model is correctly specified, then the zero-beta rate should be unique. Com-

paring equation (1) and equation (8), I know that a unique series of the zero-beta rate rz,t

imposes restrictions connecting the intercept terms of the time series regressions for all test

assets. Specifically, the null hypothesis I am testing is:

H0 : the time series regression intercept αi = (1− βM,i)r̄z ∀i (9)

where r̄z is the sample mean of the zero-beta rate and βM,i is the market beta. Here is the

testing procedure:

(i) For each test asset i, run regression (1) and use the intercept coefficient to compute

the implied mean of the zero-beta rate: r̄iz = αi/(1− βM,i).

(ii) The implied mean of the zero-beta rate should be equal across all test assets. Therefore,

for another test asset j ̸= i, conduct the F-test8: αj = (1− βM,j)r̄
i
z .

Suppose I have N test assets and K risk factors, then this pair-wise testing procedure

ends up generating N × (N −1) separate tests and F-statistics. Figure 4 plots the histogram

of N×(N−1) F-statistics in my first test for the FF6+BAB seven-factor model. Specifically,

8This is the textbook test for a linear restriction on the OLS coefficients, αj and βM,j :

αj = (1− βM,j)r̄
i
z ⇔ αj + r̄izβM,j = r̄iz

rewrite this linear restriction in the matrix form: H · B̂ = r̄iz where H =
[
1 r̄iz 0 · · · 0

]
and B̂ is the

OLS coefficient vector:
[
αj βM,j β2,j · · · βK,j

]
. Then, I have the F-statistics and its distribution:

F =
(HB̂ − r̄iz)

′ [H(X ′X)−1H ′] (HB̂ − r̄iz)

ê′ê/(N −K − 1)
∼ F (1, N −K − 1)

where N is the number of assets, K is the number of factors, X is the factor matrix including the constant
term, and ê is the sample residual vector.
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Figure. 4. Histogram of F-Statistics

Crital Value: 3.92

Probability of Rejection: 13.18%
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Notes: This figure plots the histogram of N × (N − 1) F-statistics in the Fama-MacBeth time
series regression test for the FF6+BAB model. The red vertical dashed line represents the critical
value (3.92) of the F distribution with degrees of freedom 1 and N −K − 1 with a 5% significance
level.

I have 135× 134 = 18, 090 pair-wise tests and F-statistics out of 135 testing portfolios. The

red vertical dashed line represents the critical value (3.92) of the F distribution with degrees

of freedom 1 and 1 (N − K − 1) with a 5% significance level. Among the 18,090 separate

tests, 13.18% of them reject the individual null hypothesis: αj = (1 − βM,j)r̄
i
z. Since the

probability of rejection (13.18%) is higher than 5%, I conclude that the overall null hypothesis

is rejected. That is, the zero-beta rate is not unique in the FF6+BAB model.

The first row of Table 2 reports the probabilities of rejection for all 8 factor models. All

of them are higher than the 5% significance threshold, indicating that all the 8 factor models

are rejected based on this test. They do not feature a unique zero-beta rate and thus are not

consistent with the factor model theories. Figure A.4 plots the histogram of N × (N − 1)

F-statistics for all 8 factor models.

Test 2: A Zero-Beta-Portfolio Test

The second test works with the zero-beta-portfolio approach from DHKW. Recall that

DHKW focuses on the minimum-variance zero-beta portfolio and estimates the zero-beta

rate by predicting the expected return of that portfolio. However, I should acknowledge that

there exists an infinite number of zero-beta portfolios for any factor model. If the factor

model is correctly specified, then the zero-beta rate is unique. This means that the expected

return of all zero-beta portfolios should be equalized. Motivated by this idea, I look at a
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Table 2: Model Testing based on the Uniqueness of the Zero-Beta Rate

Models CAPM D-CCAPM FF3 FF6+BAB Q5 LIQ DUR INM

Test 1
Pr(Rejection)

21.25% 11.54% 18.01% 13.18% 11.54% 17.52% 18.67% 11.61%

Test 2
p-value

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: This table reports the model testing results based on the uniqueness of the zero-beta rate
for all 8 prominent factor models. Section 3.2 describes the two tests. The first row reports the
probabilities of rejection for test 1. The second row reports the p-values for test 2.

large number of zero-beta portfolios and test whether they have the same expected return

in a statistical sense. Specifically, the null hypothesis I am testing is:

H0 : the means of all zero-beta portfolios are equalized (10)

Here is the testing procedure:

(i) Completely follow the zero-beta-portfolio approach from DHKW described in section

2.2. This procedure produces the beta estimates and the minmum-variance zero-beta

portfolio weights.

(ii) Construct multiple zero-beta portfolios that are close to the minimum-variance zero-

beta portfolio. I want to make sure that the constructed zero-beta portfolios are close

to the minimum-variance one for better visualization in the mean-standard deviation

space. I do it in the following steps. First. I construct the null space of the betas9.

Second, I project the minimum-variance zero-beta portfolio weight onto the beta null

space and obtain the coefficients. Next, I perturb the coefficients by adding tiny normal

shocks to construct 10,000 new coefficients. Finally, I multiply the new coefficients by

the basis of the beta null space and get the new portfolio weights after normalization.

In this way, I can make sure that the constructed portfolio weights are close to the

minimum-variance zero-beta portfolio weight.

(iii) With the 10,000 zero-beta portfolio weights, I construct 10,000 zero-beta portfolios that

are close to the minimum-variance zero-beta portfolio. Then, I perform the one-way

ANOVA to test whether these 10,000 portfolios have the same expected return.

Figure 5 plots the zero-beta portfolios constructed around the zero-beta portfolio of

minimum variance in the mean standard deviation space for the FF6+BAB model. The

9The null space of betas is characterized by a set of basis vectors. Any linear combination of the basis
vectors will be zero-beta by definition.
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Figure. 5. Constructed Zero-Beta Portfolios
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Notes: This figure plots the constructed zero-beta portfolios around the minimum-variance
zero-beta portfolio in the mean-standard deviation space for the FF6+BAB model. The red dot
Z∗ represents the minimum-variance zero-beta portfolio. The blue dots denote the random
zero-beta portfolios.

red dot Z∗ represents the minimum-variance zero-beta portfolio. The blue dots denote the

random zero-beta portfolios. Interestingly, the shape of the zero-beta portfolios is highly

consistent with being bounded by a half hyperbola, as is shown in section 3.1 (see Figure 3).

Obviously, it is hard to believe that all zero-beta portfolios have the same mean. Indeed,

the F-statistic for the ANOVA is 4.678 with a p-value of 0.00. Hence, I conclude that the

overall null hypothesis is rejected. That is, the zero-beta rate is not unique in the FF6+BAB

model.

The second row of Table 2 reports the ANOVA p-values for all 8 factor models. All of

them are 0.00, indicating that all the 8 factor models are rejected based on this test. They

do not feature a unique zero-beta rate and thus are not consistent with the factor model

theories. Figure A.5 plots the constructed zero-beta portfolios for all 8 factor models.

In summary, I have proposed two tests (a time series regression test and a zero-beta port-

folio test) to evaluate the factor models. I show that all the 8 prominent factor models fail my

tests indicating that they do not feature a unique zero-beta rate and thus are not consistent

with factor model theories. Combined with Proposition 1, it is reasonable to believe that the

high level and volatility of the estimated zero-beta rate in section 2 could potentially come

from model misspecification in theory. Now the question is: How quantitatively important

is model misspecification? A simulation analysis can give us the answer.
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3.3. Simulation Analysis

Up to now, I know that model misspecification could theoretically generate a high level

and volatility of the estimated zero-beta rate, and our 8 prominent factor models are indeed

misspecified in the view of a unique zero-beta rate. I proceed to perform simulation analyses

to quantify the importance of model misspecification in the estimation of the zero-beta

rate using the previous two approaches (the Fama-MacBeth approach and the zero-beta-

portfolio approach). Simulation can also achieve other desired purposes. First, I show that

if a particular model is correctly specified, it is able to recover the true unobserved zero-beta

rate with the two approaches and it is able to pass my two tests. This means that the

two estimation approaches and the two tests are statistically valid. There is nothing wrong

with the methods. Second, since both approaches potentially suffer from the issue of errors-

in-variables (EIV), the simulation is also able to quantify and compare the effects of both

model misspecification and errors-in-variables. It turns out that both channels contribute

nontrivially to the high level and volatility of the estimated zero-beta rate.

3.3.1. Simulating the asset returns

Let me start from describing my data simulation. First, I create an artificial zero-beta

rate which is assumed to be a linear function of a set of macroeconomic predictors following

DHKW: rz,t = a′Yt. In fact, I am using the same set of macroeconomic predictors, Yt, as in

the zero-beta-portfolio approach to estimating the zero-beta rate. Recall that Yt includes: the

1-month Treasury bill yield, the rolling average of the previous twelve-month inflation, the

term spread, the unemployment rate, the CAPE, the corporate bond spread, and a constant

term. In the simulation, as a result, I make sure that the zero-beta-portfolio approach does

not make mistakes in specifying the set of macroeconomic predictors, isolating the effects of

model misspecification and errors-in-variables. a = [0.007, 1,−0.1, 1,−0.005, 0.0002, 0.001],

which is manually designed such that the true 1-month zero-beta rate is generally above

the 1-month Treasury yield. My simulation results are robust to the artificial design of the

zero-beta rate.

To make the simulated data as close to the real data as possible, I use the seven real-

life factors, that is, ft = MRP, SMB, HML, RMW, CMA, UMD, BAB} downloaded from

Kenneth French’s website. I also use the real-life betas, that is, β’s are estimated using

regression (1) for the N test assets with the above seven factors. The simulated return is

computed as: Rt+1 = rz,t+βft+1+σεt+1, where σ adds noises to the estimation. Intuitively,

the magnitude of σ captures the severity of errors-in-variables. Thus, I will vary the level

of σ and see how errors-in-variables affect the estimated zero-beta rate. Because the factors
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Figure. 6. Estimated Zero-Beta Rate vs True Zero-Beta Rate (Fama-MacBeth)
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Notes: This figure compares the estimated zero-beta rate using the Fama-MacBeth approach
versus the true zero-beta rate. The blue line is the estimated zero-beta rate in the simulation with
the correctly specified model and minimal estimation errors in betas (σ = 0). The red dashed line
is the artificially constructed true zero-beta rate.

and betas come directly from the real life, the simulated sample has the same length of 726

months as the factors, which range from July 1963 to December 2023.

3.3.2. The Fama-MacBeth approach in simulation

I apply the Fama-MacBeth approach in the simulated sample to estimate the zero-beta

rate. To start with, I use the full seven-factor model and assume σ = 0. When σ = 0, the

maximum standard error among estimating the seven betas for all test assets in regression

(1) is as low as 0.006210. In this way, I start from evaluating the Fama-MacBeth approach

when the model is correctly specified and the errors-in-variables concern is minimal. Figure

6 compares the estimated zero-beta rate versus the true zero-beta rate. The blue line is the

estimated zero-beta rate in the simulation with the correctly specified model and minimal

estimation errors in betas (σ = 0). The red dashed line is the artificially constructed true

zero-beta rate. The estimation is pretty good as the estimated series closely tracks the true

value, although it is not perfect because of the non-zero beta estimation errors.

Let us introduce model misspecification and errors-in-variables and see what happens. I

will look at the two channels separately and then combine them together.

10This number is not exactly zero because regression (1) uses the gross returns and its intercept term αi

does not consider the time variation in the zero-beta rate.
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Table 3: Estimated Zero-Beta Rate (Fama-MacBeth), Model Misspecification

Mean Volatility Test #1 Pr(Rejection)

Avg Max Min Avg Max Min Avg Max Min

True ZB 0.443 0.233

Correct Model 0.439 0.231 0.000

Omit 1 Factor 0.485 1.219 0.073 1.955 4.547 0.411 0.135 0.321 0.000

Omit 2 Factors 0.601 1.276 0.032 3.099 8.301 0.886 0.178 0.514 0.000

Omit 3 Factors 0.799 1.390 0.023 3.984 8.469 1.964 0.157 0.569 0.000

Omit 4 Factors 1.015 1.596 0.102 4.419 8.043 2.590 0.115 0.566 0.000

Omit 5 Factors 1.178 1.706 0.163 4.458 7.963 3.228 0.075 0.463 0.000

Omit 6 Factors 1.238 1.384 1.055 4.512 4.912 4.072 0.041 0.276 0.000

Notes: This table shows the estimation results using the Fama-MacBeth approach under model
misspecification with minimal errors-in-variables in the simulated sample. The first three columns
report the mean of the true zero-beta rate and the estimated zero-beta rates using the correct
model versus misspecified models. The middle three columns report the volatility and the last
three columns report the probability of rejection from the time series regression test described in
section 3.2. The first row reports the mean and volatility of the true zero-beta rate as a
benchmark. Moving from the second row to the last row, the magnitude of model specification
rises from none to the maximum. Since there are multiple ways to omit a certain number of
factors, I report the average, max, and min of the statistics.

First, I randomly omit factors in my estimation while keeping σ = 0. This aims to

separately examine model misspecification with minimal errors-in-variables. Since the full

correct model has seven factors, I am able to randomly omit one up to six factors. For each

misspecified model that misses one or several factors, I apply the Fama-MacBeth approach

to estimate the zero-beta rate. Table 3 shows the estimation results under model misspec-

ification with minimal errors-in-variables in the simulated sample. The first three columns

report the mean of the true zero-beta rate and the estimated zero-beta rates using the cor-

rect model versus misspecified models. The middle three columns report the volatility and

the last three columns report the probability of rejection from the time series regression test

described in section 3.2.

The first row reports the mean and volatility of the true zero-beta rate as a benchmark.

Moving from the second row to the last row, the magnitude of model specification rises from

none to the maximum. Since there are multiple ways to omit a certain number of factors,

I report the average, max, and min of the statistics. For example, there are 7 possible

21



six-factor models in the third row since there are 7 ways to randomly omit one factor from

the seven factors. For all these 7 misspecified models, I estimate the 7 zero-beta rates,

report the average, max, and min of them, and perform the test. The second row shows

that the mean and volatility of the zero-beta rate are very close to the true value (also see

Figure 6). In addition, the time series regression test produces a probability of rejection of

zero, confirming that the model is correctly specified in the sense that it features a unique

zero-beta rate. However, when I start to have model misspecification by omitting factors,

the mean and volatility of the estimated zero-beta rate are monotonically and dramatically

increasing. The average volatility of the zero-beta rate already goes up more than 8 times

even if there is only one factor missing. The misspecified models on average fail the time

series test according to the last three columns in Table 3 with the exception of omitting 6

factors. It may seem weird that the average probability of rejection is not monotonically

increasing with the magnitude of model misspecification and that there always exist models

that are misspecified but pass the test as suggested by the last “min” column. This could

be because the estimation uncertainty also accumulates with larger model misspecification,

reducing the power of the time series regression test. Therefore, the interpretation of the

time series regression test result should be treated with caution. If a model passes the test, I

cannot say that it is correctly specified. However, if a model fails the test, which is the case

for all 8 prominent factor models as is shown in section 3.2, I can claim for misspecification

(at some significance level).

Second, I gradually increase σ while keeping the correct factor model. This aims to

separately examine the errors-in-variables without model misspecification. I increase σ from

0 to 1.6 (monthly percentage), which is the calibrated average monthly standard deviation of

real-life idiosyncratic returns. Figure 7 shows the estimation results with increasing errors-

in-variables and the correct model in the simulated sample. The top-left panel plots the

maximum standard error of beta estimates as a function of σ. This confirms our intuition

that larger σ leads to larger beta estimation errors. The top-right panel shows that the

mean of the estimated zero-beta rate is increasing in σ, but the slope is pretty flat. The

bottom-left panel shows that the volatility of the estimated zero-beta rate is monotonically

increasing in σ with a slope that is much steeper than the previous panel. The bottom-right

panel plots the probability of rejection from the time series test. The almost flat line tells

us that the correct model always passes the time series regression test despite the increasing

errors-in-variables.

Table 3 and Figure 7 show that both model misspecification and errors-in-variables sep-

arately contribute to the high level and volatility of the zero-beta rate using the Fama-

MacBeth approach in a nontrivial way. I also compare the quantitative effects of both chan-
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Figure. 7. Estimated Zero-Beta Rate (Fama-MacBeth), Errors-in-Variables
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Notes: This figure shows the estimation results using the Fama-MacBeth approach with increasing
errors-in-variables and the correct model in the simulated sample. As a function of σ, the top-left
panel plots the maximum standard error of beta estimates, the top-right panel plots the mean of
the estimated zero-beta rate, the bottom-left panel plots the volatility of the estimated zero-beta
rate, and the bottom-right panel plots the probability of rejection from the time series test.

nels by combining them together. Table 4 shows the quantitative effects of both channels

(model misspecification and errors-in-variables) on the mean and volatility of the estimated

zero-beta rate. Along the rows, the magnitude of model specification rises from none to the

maximum when I move from the correct model to omitting 6 random factors. Along the

columns, the magnitude of errors-in-variables rises from the minimum to the maximum when

I increase σ from 0 to 1.6 (monthly percentage). For each pair of model misspecification and

σ, I estimate the zero-beta rates and report the average multiples of the mean or volatility

relative to those of the true zero-beta rate. With the correct model, the mean and volatility

of the estimated zero-beta rate rise to 1.1 times and 8.2, times of those of the true zero-beta

rate, respectively. However, the mean and volatility jump to 1.1 times and 8.4 times when

I only drop one random factor. This implies that model misspecification is quantitatively

contributing more to the high level and volatility of the estimated zero-beta rate.

23



Table 4: Quantification of Both Channels (Fama-MacBeth)

Mean Volatility

σ 0 0.4 0.8 1.2 1.6 0 0.4 0.8 1.2 1.6

Correct Model 1.0 1.0 1.0 1.1 1.1 1.0 2.3 4.3 6.3 8.2

Omit 1 Factors 1.1 1.1 1.1 1.2 1.2 8.4 8.7 9.5 10.4 11.5

Omit 2 Factors 1.4 1.4 1.4 1.4 1.4 13.3 13.4 13.7 14.1 14.7

Omit 3 Factors 1.8 1.8 1.8 1.8 1.9 17.1 17.1 17.2 17.4 17.6

Omit 4 Factors 2.3 2.3 2.3 2.3 2.3 18.9 18.9 19.0 19.0 19.0

Omit 5 Factors 2.7 2.7 2.7 2.7 2.7 19.1 19.1 19.1 19.1 19.2

Omit 6 Factors 2.8 2.8 2.8 2.8 2.8 19.3 19.3 19.3 19.4 19.4

Notes: This table shows the quantitative effects of both channels (model misspecification and
errors-in-variables) on the mean and volatility of the estimated zero-beta rate using the
Fama-MacBeth approach. Along the rows, the magnitude of model specification rises from none
to the maximum when I move from the correct model to omitting 6 random factors. Along the
columns, the magnitude of errors-in-variables rises from the minimum to the maximum when I
increase σ from 0 to 1.6 (monthly percentage). For each pair of model misspecification and σ, I
estimate the zero-beta rates and report the average multiples of the mean or volatility relative to
those of the true zero-beta rate.

3.3.3. The zero-beta-portfolio approach in simulation

I apply the zero-beta-portfolio approach from DHKW in the simulated sample to estimate

the zero-beta rate. Since this approach requires an estimation of the variance-covariance

matrix of returns (ΣR in equation 4), I assume in the simulation that this matrix is the same

as the real-life variance-covariance matrix obtained by a non-linear shrinkage estimator.

Similarly, I start with using the full seven-factor model and assume σ = 0. When σ = 0,

the maximum standard error among estimating the seven betas for all test assets in the

zero-beta-portfolio approach from DHKW is zero11. In this way, I start from evaluating the

zero-beta-portfolio approach when the model is correctly specified and the errors-in-variables

concern is zero. Figure 8 compares the estimated zero-beta rate versus the true zero-beta

rate. The blue line is the estimated zero-beta rate in the simulation with the correctly

specified model and zero estimation errors in betas (σ = 0). The red dashed line is the

11Recall in the Fama-MacBeth approach, the beta estimation errors are minimal but not exactly zero even
when σ = 0. Here, the zero-beta-portfolio approach is an iterative procedure that guesses and verifies the
zero-beta rate (see section 2.2). Excess returns with respect to the zero-beta rate are used in each iteration
to estimate betas. Hence, the beta estimation errors converge to zero as the zero-beta rate converges.
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Figure. 8. Estimated Zero-Beta Rate vs True Zero-Beta Rate (DHKW)
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Notes: This figure compares the estimated zero-beta rate using the zero-beta-portfolio approach
versus the true zero-beta rate. The blue line is the estimated zero-beta rate in the simulation with
the correctly specified model and zero estimation errors in betas (σ = 0). The red dashed line is
the artificially constructed true zero-beta rate.

artificially constructed true zero-beta rate. The estimation is perfect as the estimated series

perfectly overlaps with the true value.

Similar to the previous exercise, I will introduce model misspecification and errors-in-

variables separately followed by combining the two channels together.

First, I randomly omit factors in my estimation while keeping σ = 0. This aims to

separately examine model misspecification without errors-in-variables. For each misspecified

model that misses one or several factors, I apply the zero-beta-portfolio approach to estimate

the zero-beta rate. Table 5 shows the estimation results under model misspecification without

errors-in-variables in the simulated sample. The first three columns report the mean of

the true zero-beta rate and the estimated zero-beta rates using the correct model versus

misspecified models. The middle three columns report the volatility and the last three

columns report the ANOVA p-value from the zero-beta-portfolio test described in section

3.2. The first row reports the mean and volatility of the true zero-beta rate as a benchmark.

Moving from the second row to the last row, the magnitude of model specification rises

from none to the maximum. The second row shows that the mean and volatility of the

zero-beta rate are exactly the same as the true value (also see Figure 8). In addition, the

zero-beta-portfolio test produces a p-value of one, confirming that the model is correctly

specified in the sense that it features a unique zero-beta rate. However, when I start to have

model misspecification by omitting factors, the mean and volatility of the estimated zero-
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Table 5: Estimated Zero-Beta Rate (DHKW), Model Misspecification

Mean Volatility Test #1 Pr(Rejection)

Avg Max Min Avg Max Min Avg Max Min

True ZB 0.443 0.233

Keep All Factors 0.443 0.233 1.000

Omit 1 Factor 0.498 0.785 0.381 0.262 0.354 0.217 0.000 0.000 0.000

Keep 5 Factors 0.559 0.831 0.374 0.291 0.417 0.218 0.000 0.000 0.000

Keep 4 Factors 0.625 0.840 0.369 0.322 0.420 0.221 0.000 0.000 0.000

Keep 3 Factors 0.692 0.841 0.386 0.354 0.420 0.234 0.000 0.000 0.000

Keep 2 Factors 0.755 0.842 0.413 0.384 0.420 0.242 0.000 0.000 0.000

Keep 1 Factors 0.806 0.842 0.678 0.407 0.419 0.353 0.000 0.000 0.000

Notes: This table shows the estimation results using the zero-beta-portfolio approach under
model misspecification without errors-in-variables in the simulated sample. The first three
columns report the mean of the true zero-beta rate and the estimated zero-beta rates using the
correct model versus misspecified models. The middle three columns report the volatility and the
last three columns report the probability of rejection from the time series regression test described
in section 3.2. The first row reports the mean and volatility of the true zero-beta rate as a
benchmark. Moving from the second row to the last row, the magnitude of model specification
rises from none to the maximum. Since there are multiple ways to omit a certain number of
factors, I report the average, max, and min of the statistics.

beta rate are monotonically increasing. Compared to the Fama-MacBeth approach in Table

3, the speed of increase is much lower with the zero-beta-portfolio approach, suggesting

its superiority over the former method. According to the last three columns, all of the

misspecified models fail the zero-beta-portfolio test. If a model fails the test, which is the case

for all 8 prominent factor models as is shown in section 3.2, I can claim for misspecification

(at some significance level).

Second, I gradually increase σ while keeping the correct factor model. This aims to

separately examine the errors-in-variables without model misspecification. I increase σ from

0 to 1.6 (monthly percentage), which is the calibrated average monthly standard deviation of

real-life idiosyncratic returns. Figure 9 shows the estimation results with increasing errors-

in-variables and the correct model in the simulated sample. The top-left panel plots the

maximum standard error of beta estimates as a function of σ. This confirms our intuition

that larger σ leads to larger beta estimation errors. The top-right panel shows that the

mean of the estimated zero-beta rate is increasing in σ. The bottom-left panel shows that
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Figure. 9. Estimated Zero-Beta Rate (DHKW), Errors-in-Variables
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Notes: This figure shows the estimation results using the zero-beta-portfolio approach with
increasing errors-in-variables and the correct model in the simulated sample. As a function of σ,
the top-left panel plots the maximum standard error of beta estimates, the top-right panel plots
the mean of the estimated zero-beta rate, the bottom-left panel plots the volatility of the
estimated zero-beta rate, and the bottom-right panel plots the ANOVA p-value from the
zero-beta-portfolio.

the volatility of the estimated zero-beta rate is also increasing in σ with a slope that is

similar to the previous panel. The bottom-right panel plots the ANOVA p-value from the

zero-beta-portfolio test. That the p-values are close to 1 implies that the correct model

always passes the zero-beta-portfolio test despite the increasing errors-in-variables.

Table 5 and Figure 9 show that both model misspecification and errors-in-variables sep-

arately contribute to the high level and volatility of the zero-beta rate using the zero-beta-

portfolio approach in a nontrivial way. I also compare the quantitative effects of both chan-

nels by combining them together. Table 6 shows the quantitative effects of both channels

(model misspecification and errors-in-variables) on the mean and volatility of the estimated

zero-beta rate. Along the rows, the magnitude of model specification rises from none to

the maximum when I move from the correct model to omitting 6 random factors. Along
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Table 6: Quantification of Both Channels (DHKW)

Mean Volatility

σ 0 0.4 0.8 1.2 1.6 0 0.4 0.8 1.2 1.6

Correct Model 1.0 1.0 1.1 1.2 1.2 1.0 1.0 1.2 1.2 1.3

Omit 1 Factors 1.1 1.2 1.2 1.3 1.4 1.1 1.2 1.2 1.4 1.4

Omit 2 Factors 1.3 1.3 1.4 1.4 1.5 1.2 1.3 1.4 1.4 1.5

Omit 3 Factors 1.4 1.4 1.5 1.5 1.6 1.4 1.4 1.5 1.6 1.6

Omit 4 Factors 1.6 1.6 1.6 1.7 1.8 1.5 1.6 1.6 1.7 1.8

Omit 5 Factors 1.7 1.7 1.8 1.8 1.9 1.6 1.7 1.8 1.8 1.9

Omit 6 Factors 1.8 1.8 1.9 2.0 2.0 1.7 1.8 1.9 1.9 2.0

Notes: This table shows the quantitative effects of both channels (model misspecification and
errors-in-variables) on the mean and volatility of the estimated zero-beta rate using the
Fama-MacBeth approach. Along the rows, the magnitude of model specification rises from none
to the maximum when I move from the correct model to omitting 6 random factors. Along the
columns, the magnitude of errors-in-variables rises from the minimum to the maximum when I
increase σ from 0 to 1.6 (monthly percentage). For each pair of model misspecification and σ, I
estimate the zero-beta rates and report the average multiples of the mean or volatility relative to
those of the true zero-beta rate.

the columns, the magnitude of errors-in-variables rises from zero to the maximum when I

increase σ from 0 to 1.6 (monthly percentage). For each pair of model misspecification and

σ, I estimate the zero-beta rates and report the average multiples of the mean or volatility

relative to those of the true zero-beta rate. With the correct model, the mean and volatility

of the estimated zero-beta rate rise to 1.2 times and 1.3 times of those of the true zero-beta

rate, respectively. However, the mean and volatility jump to 1.3 times and 1.2 times when

I only drop two random factors. This implies that model misspecification is quantitatively

contributing more to the high level and volatility of the estimated zero-beta rate using the

zero-beta-portfolio approach.

Now I am able to answer the question at the beginning of section 3: Is the zero-beta rate

truly high and volatile or are the estimation methods in trouble? I show that the estimated

zero-beta rate tends to be too high and too volatile because of both model misspecification

and errors-in-variables. Section 3.1 establishes the theoretical result that model misspecifi-

cation leads to the multiplicity of the zero-beta rate, which in turn contributes to the high

level and volatility of the estimated zero-beta rate given the nature of the two approaches
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in section 2. Section 3.2 confirms that the 8 prominent factor models studied in this paper

all fail the two new tests that I designed to test for the uniqueness of the zero-beta rate.

The simulation analyses in section 3.3 show that model misspecification is quantitatively

nontrivial in explaining the high level and volatility of the estimated zero-beta rate. the

errors-in-variables problem is also another contributing factor, but it has less power than

model misspecification. Comparing the two approaches, the zero-beta-portfolio approach

from DHKW is less prone to both model misspecification and errors-in-variables than the

Fam-MacBeth approach. The good news is that the literature is indeed making progress on

the estimation side. The bad news, however, is that I may still not be able to interpret the

estimated zero-beta rate as the true unobserved risk-free rate.

4. A New Perspective on Evaluating Factor Models

In section 3, I proposed two new tests for factor models based on the idea that a cor-

rectly specified factor model should feature a unique zero-beta rate. Unfortunately, all the 8

prominent factor models studied in this paper fail these tests in the sense that they all imply

an indeterminate zero-beta rate. This constitutes a new perspective on evaluating factor

models. To understand how this new perspective connects to the model testing literature,

section 4.1 reviews the conventional asset pricing tests, and 4.2 discusses the relationship

between the existing tests and my new perspective of evaluating factor models. In section

4.3, I show that the new perspective also applies to a more recent advanced factor model

technique: characteristic-dense factor models12. Taking Kelly et al. (2019) as an example,

I evaluate the instrumented PCA (IPCA) factor models from the new perspective and find

that they are not consistent with the uniqueness of the zero-beta rate either.

4.1. Conventional Factor Model Testing

I test the 8 prominent factor models using the conventional two-stage Fama-MacBeth

process, which probably remains to the be the most popular testing method in the litera-

ture. It estimates the risk loadings (betas) from the time series regressions, followed by the

estimation of the factor risk premia via cross-sectional regressions. I proceed under two spec-

ifications for the Fama-MacBeth process. The first specification uses the 1-month Treasury

yield as the risk-free/zero-beta rate and tests factor models with excess returns. That is, I

12This term comes from the machine learning literature, which refers to the traditional Fama-French style
factor models as characteristic-sparse models since they pre-specify factors based on a small number of
firm characteristics. On the contrary, models that extract pricing information from a large number of firm
characteristics are referred to as characteristic-dense models.
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Table 7: Model Testing Statistics in Fama-MacBeth

Statistics Papers Descriptions

Panel A: Model Specification Tests

R2 Cross-sectional R2

se(R2) Kan et al. (2013) Standard Error of R2

p(R2 = 1) Kan et al. (2013) p-value, H0 : R
2 = 1

p(R2 = 0) Kan et al. (2013) p-value, H0 : R
2 = 0

p(λK = 0K) p-value, H0 : all factor premia are zero

Panel B: Factor Risk Premium Tests

t-statfmb Fama and MacBeth (1973) t-stat in Fama-MacBeth

t-stats Shanken (1992) t-stat adj. for EIV under homoskedasticity

t-statjw Jagannathan and Wang (1998) t-stat adj. for EIV under HAC

t-statrks Kan et al. (2013) t-stat adj. for EIV, HAC, and misspecification

Notes: This table lists the testing statistics I will report in the Fama-MacBeth process. Panel A
and Panel B list the model specification test statistics and the factor risk premium test statistics,
respectively, corresponding to the two testing objectives.

run regression (7) with rz,t restricted to be equal to the 1-month Treasury yield in the first

step. In the second step, I run a single cross-sectional regression where the left-hand side is

a vector of sample mean excess returns and the right-hand side includes the beta estimates

without a constant term13. The second specification assumes that the zero-beta rate is un-

available (risk-free assets are not traded) and tests factor models with gross returns. That

is, I run regression (1) using gross returns in the first step. In the second step, I run a single

cross-sectional regression where the left-hand side is a vector of sample mean gross returns

and the right-hand side includes the beta estimates with a constant term. A constant term

is included here to capture the unobserved zero-beta rate.

The Fama-MacBeth process achieves two testing objectives. First, it can test for model

specification, investigating whether a factor model explains the cross-sectional differences

in expected asset (excess) returns in terms of asset exposures (betas) to model specified

systematic risk factors. Second, it can test whether a risk factor is priced in the cross-

section of the asset (excess) returns, and compute the factor risk premium. I list the testing

statistics I will consider in the Fama-MacBeth process in Table 7. The choice of these criteria

13It is a standard practice in the literature to exclude a constant term in the cross-sectional regression
since I have excess returns on the left-hand side. There are also papers including a constant term.
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mainly follows Kan et al. (2013) (KRS, hereafter). Panel A lists the model specification test

statistics. R2 is the most common measure of goodness of fit, indicating the extent to which

the factor model accounts for the cross-sectional variations in mean (excess) returns. The

next three statistics come from KRS, which recognizes the sampling uncertainty of the R2

and derives its asymptotic distribution. se(R2) is the asymptotic sampling standard error of

R2. p(R2 = 1) is the p-value ofH0 : R
2 = 1, testing whether I have a correctly specified factor

model (R2 = 1). At the other extreme, p(R2 = 0) is the p-value of: H0 : R2 = 0, testing

whether the model has any explanatory power for (excess) returns. The last one in Panel

A, p(λK = 0K), is the p-value of a standard Wald test: H0 : λK = 0K , checking whether

all the factor risk premia are zero. Panel B lists the factor risk premium test statistics.

t-statfmb is the standard t-statistics of the factor risk premium presuming a correctly specified

model (Fama and MacBeth, 1973). t-stats is the t-statistics adjusted for errors-in-variables

under homoskedasticity (Shanken, 1992). t-statjw is the t-statistics adjusted for errors-in-

variables allowing for conditional heteroskedasticity and auto-correlated errors (Jagannathan

and Wang, 1998). t-statrks is the t-statistics adjusted for errors-in-variables with HAC errors

and model specification (KRS).

Table 8 reports the model specification testing results. For all the 8 prominent factor

models, I use the same set of test assets14 since I would like to run a horse race to compare all

the models. Panel A and C assume that the zero-beta rate is equal to the 1-month Treasury

yield using OLS and GLS, respectively, for the cross-sectional regression. Note the 135 test

assets mainly include long-short portfolios constructed using multiple firm characteristics:

size, value, operating profitability, investment, momentum, and market beta. It is well ex-

pected that the “FF6+BAB” and “Q5” models would perform better since they are designed

to capture more anomalies. Indeed, only “FF6+BAB” or “Q5” have a cross-sectional R2

above 73% with OLS and 7% with GLS, while other smaller models have lower or even

negative R2’s15 shown in the first row of each panel. In the fifth row, the Wald tests show

that I can reject that all factor risk premia are zero for the 8 models.

Most papers stop right here claiming good performances for “FF6+BAB” and “Q5” after

observing decent R2’s. However, a main contribution in KRS is the sampling uncertainty

of the cross-sectional R2. The second row of each panel in Table 8 reports the sampling

asymptotic standard errors of R2 and the third and fourth rows test whether R2 = 1 and

R2 = 0, respectively. My results show that all models should reject R2 = 116, indicating

model misspecification. All models should not reject R2 = 0 with OLS estimation and only

14See Appendix A.1 for the identities of the 135 test assets.
15Some models such as CAPM have negative cross-sectional R2’s. This is because I do not include a

constant term for the second-stage cross-sectional regression in the Fama-MacBeth process.
16I omit the significance levels when I discuss the hypothesis tests for conciseness.
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Table 8: Model Specification Testing Results

Panel A: OLS, Zero-Beta Rate = 1M TBill Yield

Model CAPM D-CCAPM FF3 FF6+BAB Q5 LIQ DUR INM

R2 -0.428 -0.048 -0.105 0.732 0.738 -0.165 -0.306 0.264

se(R2) 0.245 0.333 0.253 0.083 0.083 0.271 0.279 0.208

p(R2 = 1) 0.000 0.021 0.000 0.000 0.038 0.000 0.000 0.000

p(R2 = 0) 1.000 1.000 1.000 0.426 0.451 1.000 1.000 0.746

p(λK = 0K) 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

Panel B: OLS, Zero-Beta Rate Unavailable

Model CAPM D-CCAPM FF3 FF6+BAB Q5 LIQ DUR INM

R2 0.004 0.177 0.294 0.749 0.741 0.243 0.284 0.400

se(R2) 0.030 0.169 0.171 0.079 0.082 0.160 0.169 0.146

p(R2 = 1) 0.000 0.002 0.000 0.000 0.025 0.000 0.000 0.000

p(R2 = 0) 0.806 0.419 0.094 0.005 0.008 0.289 0.104 0.087

p(λK = 0K) 0.806 0.207 0.054 0.000 0.000 0.205 0.052 0.001

Panel C: GLS, Zero-Beta Rate = 1M TBill Yield

Model CAPM D-CCAPM FF3 FF6+BAB Q5 LIQ DUR INM

R2 -0.070 -0.065 -0.046 0.070 0.124 -0.042 -0.065 -0.010

se(R2) 0.025 0.027 0.027 0.033 0.043 0.026 0.026 0.030

p(R2 = 1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

p(R2 = 0) 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000

p(λK = 0K) 0.000 0.004 0.000 0.000 0.000 0.000 0.003 0.000

Panel D: GLS, Zero-Beta Rate Unavailable

Model CAPM D-CCAPM FF3 FF6+BAB Q5 LIQ DUR INM

R2 0.000 0.013 0.020 0.119 0.151 0.015 0.008 0.037

se(R2) 0.000 0.013 0.010 0.027 0.036 0.009 0.006 0.018

p(R2 = 1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

p(R2 = 0) 0.947 0.378 0.028 0.000 0.000 0.208 0.334 0.006

p(λK = 0K) 0.947 0.349 0.019 0.000 0.000 0.112 0.288 0.005

#Obs. 726 726 726 726 684 660 726 648

Notes: This table reports the model specification testing results. R2 is the cross-sectional R2.
se(R2) is the asymptotic sampling standard error of R2. p(R2 = 1) is the p-value of: H0 : R

2 = 1.
At the other extreme, p(R2 = 0) is the p-value of: H0 : R

2 = 0. p(λK = 0K) is the p-value of a
standard Wald test: H0 : λK = 0K . Panel A and C assume that the zero-beta rate is equal to the
1-month Treasury yield, while Panel B and D assume that the zero-beta rate is unavailable. Panel
A and B use OLS, while Panel C and D use GLS for the cross-sectional regression.
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Table 9: Factor Risk Premium Testing Results (“FF6+BAB” )

Panel A: OLS, Zero-Beta Rate = 1M TBill Yield

Factors ZBR MRP SMB HML RMW CMA UMD BAB

Estimate 0.591 0.221 0.271 0.220 0.210 0.671 0.412

t-statfm 3.520 1.930 2.363 2.425 2.497 4.215 2.334

t-stats 3.517 1.927 2.355 2.402 2.476 4.206 2.270

t-statjw 3.515 1.907 2.332 2.358 2.479 4.121 2.244

t-statkrs 3.513 1.904 2.355 2.295 2.394 4.131 2.110

Panel B: OLS, Zero-Beta Rate Unavailable

Factors ZBR MRP SMB HML RMW CMA UMD BAB

Estimate 0.731 0.236 0.215 0.270 0.231 0.199 0.645 0.077

t-statfm 4.101 0.951 1.883 2.350 2.556 2.387 4.050 0.367

t-stats 3.933 0.928 1.881 2.344 2.537 2.372 4.043 0.357

t-statjw 3.884 0.926 1.866 2.336 2.506 2.381 3.992 0.367

t-statkrs 3.578 0.890 1.864 2.359 2.430 2.280 3.998 0.306

TS Mean of the CSR Estimates 0.731 0.236 0.215 0.270 0.231 0.199 0.645 0.077

TS Mean of Data 0.363 0.568 0.215 0.292 0.283 0.273 0.600 0.770

TS Std.Dev of the CSR Estimates 4.808 6.686 3.081 3.097 2.440 2.249 4.292 5.629

TS Std.Dev of Data 0.266 4.497 3.033 2.995 2.225 2.077 4.213 3.262

Panel C: GLS, Zero-Beta Rate = 1M TBill Yield

Factors ZBR MRP SMB HML RMW CMA UMD BAB

Estimate 0.582 0.209 0.294 0.234 0.273 0.647 0.354

t-statfm 3.485 1.854 2.627 2.789 3.478 4.115 2.424

t-stats 3.485 1.853 2.625 2.784 3.471 4.112 2.380

t-statjw 3.486 1.851 2.622 2.772 3.464 4.108 2.388

t-statkrs 3.487 1.847 2.600 2.778 3.459 4.072 2.105

Panel D: GLS, Zero-Beta Rate Unavailable

Factors ZBR MRP SMB HML RMW CMA UMD BAB

Estimate 0.915 0.027 0.207 0.289 0.234 0.267 0.641 -0.008

t-statfm 7.933 0.133 1.833 2.578 2.797 3.403 4.076 -0.050

t-stats 7.582 0.131 1.833 2.576 2.793 3.397 4.074 -0.049

t-statjw 7.670 0.132 1.832 2.572 2.788 3.398 4.073 -0.051

t-statkrs 5.882 0.114 1.827 2.556 2.790 3.395 4.041 -0.041

TS Mean of the CSR Estimates 0.915 0.027 0.207 0.289 0.234 0.267 0.641 -0.008

TS Mean of Data 0.363 0.568 0.215 0.292 0.283 0.273 0.600 0.770

TS Std.Dev of the CSR Estimates 3.110 5.466 3.040 3.018 2.260 2.116 4.239 4.406

TS Std.Dev of Data 0.266 4.497 3.033 2.995 2.225 2.077 4.213 3.262
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“FF6+BAB” and “Q5” reject R2 = 0 with GLS estimation. To sum up Panel A and C,

“FF6+BAB” and “Q5” stand out among the 8 models for the 135 test assets. However,

testing for whether R2 = 1 implies that they are also misspecified.

Let us move to Panel B and D where I assume the zero-beta rate is unavailable. The

testing results are remarkably similar to what Panel A and C imply. “FF6+BAB” and “Q5”

stand out among the 8 models according to the cross-sectional R2. Looking at the Wald

test in the fifth row of each panel, only “FF6+BAB”, “Q5”, and “INM” can reject that all

factor risk premia are zero. For the R2-based tests from KRS, only “FF6+BAB”, “Q5”,

and “INM” reject R2 = 0 and all models reject R2 = 1. Hence, all models are misspecified

in the sense that the cross-sectional pricing errors are non-zero. Comparing Panel A and

C with Panel B and D, I find that my assumption about the zero-beta rate does not make

a significant difference in the Fama-MacBeth testing. Whether I restrict the zero-beta rate

to be equal to the Treasury yield or assume the zero-beta rate to be unavailable does not

change my conclusions on model performance and comparison.

Since the “FF6+BAB” model performs well according to Table 8, I take it as an example

to report the factor risk premium test results in Table 9. Panel A and C assume that the

zero-beta rate is equal to the 1-month Treasury yield using OLS and GLS, respectively,

for the cross-sectional regression. I find that all factors except “SMB” carry significant

risk premia according to all 4 t-statistics. Generally speaking, t-statfmb is the largest, and

t-statkrs is the smallest among the 4 since the latter accounts for EIV, HAC errors and model

misspecification. t-stats and t-statjw are generally in between as they account for EIV with

either homoskedasticity or HAC errors. Let us move to Panel B and D where I assume the

zero-beta rate is unavailable. Since there is an extra constant term in the cross-sectional

regression, I also report the constant estimate and its t-statistics under column “ZBR”.

First, the constant term is an estimate of the average zero-beta rate and it is significantly

different from zero according to the 4 t-statistics. Second, I observe that the market factor

and the BAB factor lose their pricing power in this case. In the last 4 rows of Panel B

and D, I run cross-sectional regressions period-by-period and report the time series mean

and standard deviation of regression coefficients17. I also report the time series mean and

standard deviation of the realized factor returns for comparison (“ZBR” is compared with

the 1-month Treasury). First, the estimated zero-beta rate is much higher and more volatile

than the Treasury yield, as discussed in section 2. Second, the estimated market factor risk

premium and the BAB factor risk premium are much smaller than their counterparties in

the data. This evidence suggests that relaxing the restriction on the zero-beta rate may

violate the estimation of the risk premia of some factors such as MRP and BAB.

17This is the Fama-MacBeth approach to estimating the zero-beta rate described in 2.1
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Figure. 10. Model-Predicted vs Actual Returns (“FF6+BAB”)
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(a) Zero-Beta Rate = 1M TBill Yield
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(b) Zero-Beta Rate Unavailable

Notes: This figure plots the model predicted versus actual returns in Figure 10. Panel (a) shows
the pairs of model-predicted expected excess returns and actual expected excess returns in red
circles, assuming the zero-beta rate is equal to the Treasury yield. Panel (b) shows the pairs of
model-predicted expected gross returns and actual expected gross returns in red circles, assuming
the zero-beta rate is unobservable. The blue dashed lines are the 45-degree lines.

4.2. Conventional Testing vs Zero-Beta-Rate Testing

In the factor model testing literature, the cross-sectional R2 remains to be the most

common measure of goodness of fit. Although relaxing the restriction on the zero-beta rate

may violate some risk premia estimates in the “FF6+BAB” model (see Table 9), Table 8

indicates that it generates good R2 in pricing the cross-section of stock returns. Hence,

from the conventional view, I tend to conclude that the “FF6+BAB” model works well. To

reinforce this conclusion, I plot the model predicted versus actual returns in Figure 10. Panel

(a) shows the pairs of model-predicted expected excess returns and actual expected excess

returns in red circles, assuming the zero-beta rate is equal to the Treasury yield. Panel (b)

shows the pairs of model-predicted expected gross returns and actual expected gross returns

in red circles, assuming the zero-beta rate is unobservable. The blue dashed lines are the

45-degree lines. No matter what I assume about the zero-beta rate, the “FF6+BAB” model

produces expected (excess) returns that are almost perfectly in line with the data. In fact,

many papers present scatter plots similar to Figure 10 and declare good performances of

their models.

I think this literature protocol may be a bit hasty. Having a high cross-sectional R2 (a

good-looking Figure 10) does not mean that the model is correctly specified. Unfortunately,

the literature typically takes a high-R2 model as the correct model and proceeds to conduct

inferences about the risk premia, perform out-of-sample analyses, discuss the implications
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of risk pricing, etc. KRS is one of the first papers to propose additional model specification

tests. It recognizes the sampling uncertainty of R2 and advocates tests of whether R2 = 1 or

R2 = 0. If a model rejects R2 = 1, it is misspecified according to KRS. Consequently, KRS

proposes to test the factor risk premia using t-statistics that adjust for errors-in-variables

(EIV), heterogeneous errors with autocorrelation (HAC), and model misspecification.

Note that model misspecification in KRS is an empirical concept, meaning the non-zero

aggregate pricing errors (sum of squares of residuals) in the cross-sectional regression. In

other words, there exists model misspecification as long as the cross-sectional R2 is statis-

tically different from 1. My view of model misspecification comes from the theory side,

emphasizing the theoretical uniqueness of the zero-beta rate. In section 3.2, I proposed two

model specification tests investigating whether the factor model is consistent with the un-

derlying theory that permits a unique zero-beta rate. Through the lens of my zero-beta rate

test, all 8 prominent factor models are rejected, meaning that they are inherently misspeci-

fied. Although it may sound astonishing to claim that these popular models are misspecified,

I am not trying to deny their contributions to the empirical asset pricing literature. In fact,

most of the factor models indeed do a good job of pricing the cross-section of stock returns

and identifying the sources of systematic risks. Moreover, they inspire and guide the devel-

opment of the finance industry especially in asset management businesses. Instead, I argue

for a comprehensive perspective on evaluating factor models.

The conventional perspective of model testing focuses on whether a particular risk factor

candidate earns a risk premium. Hence, conventional tests are able to tell us whether a

particular factor represents a source of systematic risks. Nevertheless, when I evaluate the

factor models from a different angle based on the uniqueness of the zero-beta rate, these

factor models are shown to be inconsistent with the underlying factor model theories. This

is a new perspective of evaluating factor models, focusing on whether the proposed factor

model completely captures all the systematic risks. Therefore, the new perspective is much

stricter than the conventional perspective. Whether this new perspective is relevant depends

on different purposes. Typically, I aim to understand whether one particular factor is priced

in the cross-section without needing to identify all risk factors. In this case, conventional

tests suffice to provide an answer. In the zero-beta rate literature, however, constructing

the zero-beta rate essentially requires us to rule out all the risk sources, where my new

perspective is an important consideration before selecting factor models. Ignoring this new

perspective may lead us to falsely accept wrong factor models, and thus producing flawed

estimates. In addition, this new perspective of evaluating factor models may also explain the

poor out-of-sample performances of existing models. If the selected factor model is essentially

incorrectly specified, taking to model to the out-of-sample is highly likely to be in vain. In
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summary, I advocate researchers and practitioners to take a critical and rigorous view on

empirical factor models and I argue for the importance of the new perspective of evaluating

factor models based on the uniqueness of the zero-beta rate.

4.3. Instrumented PCA (IPCA) Factor Models

The 8 models studied in this paper are all characteristic-sparse where they pre-specify

risk factors based on a small number of stock characteristics (e.g., size, book-to-market ratio,

momentum, etc) and assume constant risk loadings in the Fama-French style. Recently, an

emerging literature proposes characteristic-dense factor models (Fan et al., 2016; Kelly et al.,

2019; Lettau and Pelger, 2020; Kozak et al., 2020; Chen et al., 2023; etc.) where the time-

varying risk loadings are modeled as functions of a large number of stock characteristics.

Their PCA-based methods allow us to estimate latent risk factors that are relevant in pricing

the stock returns without manually constructing the long-short portfolios. In this section,

I apply my new model testing perspective to this literature using the instrumented PCA

(IPCA) factor models from Kelly et al. (2019) (KPS, hereafter) as examples. Specifically, I

ask whether the IPCA models feature a unique zero-beta rate.

The IPCA model specification for the excess return vector is:

Rt+1 − rz,t = αt + βtFt+1 + εi,t+1

αt = ZtΓα, βt = ZtΓβ

(11)

where Ri,t is an N -dimension vector gross returns, Ft+1 is a K-dimension vector of latent

factors, αt(N×1) and βt(N×K) are assumed to be time-varying and are linear functions of L

firm characteristics, Zt (an N × L matrix). The original KPS paper uses excess returns for

estimation, and thus rz,t is restricted to be equal to the 1-month Treasury yield. Now, I

adapt this system to my interested case where the zero-beta rate is unobservable:

Rt+1 = rz,t + βtFt+1 + εi,t+1 = δtYt + βtFt+1 + εi,t+1

δt = ZtΓδ, βt = ZtΓβ

(12)

where βt is assumed to be time-varying and is a linear function of firm characteristics, Zt, as

in KPS. I also assume the zero-beta rate rz,t = δtYt is a linear function of M macroeconomic

predictors, Yt (an M -dimension vector), following Di Tella et al. (2023). In the spirit of KPS,

I assume δt(N×M) is a linear function of firm characteristics, Zt. Since both macro predictors

and firm characteristics include constant terms, αt will be captured in δtYt. The zero-beta

rate can be decomposed as:
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rz,t = δtYt = ZtΓδYt =
[
Z̃t 1N

] [Γ̃δ

Γ0

]
Yt

= Z̃tΓ̃δYt︸ ︷︷ ︸
asset-specific component

+ 1NΓ0Yt︸ ︷︷ ︸
common component

(13)

This system is general in the sense that I allow for an asset-specific component in the zero-

beta rate. Factor model theories suggest that Γ̃δ should be zero, which constitutes my test

for the uniqueness of the zero-beta rate. If Γ̃δ = 0, then rz,t = Γ0Yt for all assets, implying

a unique zero-beta rate. If Γ̃δ ̸= 0, then there exists an asset-specific component of the

zero-beta rate, inconsistent with the theories.

Rearrange equation (12) I have:

Rt+1 = ZtΓδYt + ZtΓβFt+1 + εi,t+1 ≡ ZtΓGGt+1 + εi,t+1

ΓG =
[
Γδ Γβ

]
, Gt+1 =

[
Yt

Ft+1

]
(14)

The estimation objective is to minimize the sum of squared pricing errors:

min
{Ft+1,ΓG}

T∑
t=1

(Rt+1 − ZtΓδYt − ZtΓβFt+1)
′ (Rt+1 − ZtΓδYt − ZtΓβFt+1)

=
T∑
t=1

(Rt+1 − ZtΓGGt+1)
′ (Rt+1 − ZtΓGGt+1)

(15)

The first-order conditions for this minimization problem are:

Ft+1 =

(
Γ′
βZ

′
tZtΓβ

)−1

Γ′
βZ

′
t

(
Rt+1 − ZtΓδYt

)
(16)

vec(ΓG) =

( T∑
t=1

(Z ′
tZt)⊗ (Gt+1G

′
t+1)

)−1( T∑
t=1

(Z ′
t ⊗Gt+1)Rt+1

)
(17)

Following KPS, I use an alternating least squares (ALS) algorithm to solve for Ft+1 and ΓG

from equation (16) and (17). Three identification assumptions are needed: (i) Γ′
βΓβ = 1K ,

(ii) Γ′
δΓβ = 0(M×K), and (iii) factors Ft+1 are orthogonal to each other and their means

are non-negative. These assumptions help to uniquely identify solutions to the first-order

conditions without placing economic restrictions. I also follow the original paper to report

two model performance measures:
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Total R2 = 1−

T∑
t=1

(Rt+1 − ZtΓδYt − ZtΓβFt+1)
′ (Rt+1 − ZtΓδYt − ZtΓβFt+1)

T∑
t=1

R′
t+1Rt+1

(18)

Predictive R2 = 1−

T∑
t=1

(Rt+1 − ZtΓδYt − ZtΓβΛt+1)
′ (Rt+1 − ZtΓδYt − ZtΓβΛt+1)

T∑
t=1

R′
t+1Rt+1

(19)

The total R2 represents the fraction of individual gross return variations that can be ex-

plained by the model. The predictive R2 differs from the total R2 only by replacing Ft+1 by

Λt+1, which is the mean of Ft+1. Hence, the predictive R
2 represents the faction of individual

gross return variations that can be explained by the model’s description of conditional ex-

pected returns. That is, it is measuring the model performance when I use the expected value

of factors to predict the gross returns. Recall from KPS that although IPCA models have the

benefit of operating on individual stocks, they can be interpreted as pricing characteristics-

managed portfolios in consistency with the traditional Fama-French style models. The model

performance can also be computed with respect to the L characteristics-managed portfolios:

Xt+1 = Z ′
tRt+1. Denote Wt = Z ′

tZt, then for Xt+1:

Total R2 = 1−

T∑
t=1

(Xt+1 −WtΓδYt −WtΓβFt+1)
′ (Xt+1 −WtΓδYt −WtΓβFt+1)

T∑
t=1

X ′
t+1Xt+1

(20)

Predictive R2 = 1−

T∑
t=1

(Xt+1 −WtΓδYt −WtΓβΛt+1)
′ (Xt+1 −WtΓδYt −WtΓβΛt+1)

T∑
t=1

X ′
t+1Xt+1

(21)

To be comparable with the original KPS paper, I use the same data sample of stock

returns and firm characteristics18. I use the same 6 macroeconomic predictors, Yt, as in

Section 2.219. Note the key difference between my exercises with KPS. I use IPCA mod-

18The data sample ranges from July 1962 to May 2014, including 1,403,544 stock-month observations for
12,813 unique stocks and 36 firm characteristics for each stock. See Kelly et al. (2019) for details.

19The 6 macroeconomic predictors are: the 1-month Treasury bill yield, the rolling average of the previous
twelve-month inflation, the term spread, the unemployment rate, the CAPE, the corporate bond spread,
and a constant term.
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Table 10: IPCA Model Performance and Testing

Panel A: KPS Data Sample

6 7 8 9 10 11 12

Total R2 Individual Stocks 19.21 19.42 19.57 19.69 19.80 19.90 20.00

Managed Portfolios 98.93 99.20 99.35 99.43 99.49 99.53 99.59

Predictive R2 Individual Stocks 1.17 1.16 1.13 1.13 1.10 1.07 1.07

Managed Portfolios 4.76 4.71 4.48 4.51 4.33 4.20 4.42

Wδ p-value 6.95 7.72 6.56 5.79 5.41 5.79 6.95

Panel B: Simulated Data Sample

6 7 8 9 10 11 12

Total R2 Individual Stocks 99.73 98.78 99.51 99.98 99.98 99.98 99.98

Managed Portfolios 99.55 99.80 99.93 1.00 1.00 1.00 1.00

Predictive R2 Individual Stocks 6.23 5.94 5.83 5.85 5.85 5.85 5.85

Managed Portfolios 5.35 5.24 5.16 5.44 5.44 5.44 5.44

Wδ p-value 10.42 8.88 5.41 8.49 8.48 9.27 10.04

Notes: This table reports the total and predictive R2 in percentages for IPCA models with 6 to
12 factors both at the individual stock level and at the characteristics-managed portfolios. It also
reports the bootstrapping p-values of Wδ = 0. Panel A uses the same data sample of stock
returns and firm characteristics as Kelly et al. (2019). Panel B uses a simulated data sample. I
only run IPCA models with 6 to 12 factors in the simulated data because I have 6 macroeconomic
predictors that may also contain pricing information about the stock returns.

els to explain the variations of gross returns assuming a functional form for the zero-beta

rate, while KPS runs IPCA on excess returns where the zero-beta rate is assumed to be

the 1-month Treasury yield. Panel A of Table 10 reports the total and predictive R2 in

percentages for IPCA models with 6 to 12 factors at the level of both individual stocks and

characteristics-managed portfolios. I only run IPCA models with 6 to 12 factors because I

have 6 macroeconomic predictors that may also contain pricing information about the stock

returns. KPS finds that the model performance does not significantly increase with more

than 5 factors, which is confirmed in my results. The IPCA models with 7 or more factors

can explain more than 19.0% and 98% of the total variations in gross returns at the level of

individual stocks and characteristics-managed portfolios, respectively. The predictive R2’s

are above 1% and 4%.

Most importantly, I would like to test whether the zero-beta rate is unique in the IPCA

framework. Previously, I mentioned that testing for a unique zero-beta rate is equivalent to

testing H0 : Γ̃δ = 0. Let us push it further and test H0 : Γδ = 0. If Γδ = 0, then I am in an
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extreme case where the whole zero-beta rate rz,t = δtYt = ZtΓδYt = 0 for all assets. Following

KPS, I construct a Wald-like test statistics for Γδ(N×M): Wδ = vec(Γδ)
′vec(Γδ), capturing

the distance between Γδ and zero. Inferences are conducted via bootstrapping (see KPS for

details). First, I compute the residuals of characteristics-managed portfolios, d̂t+1 = Z ′
tεt+1,

from the estimated models. Next, I randomly resample with replacement from the realized

residuals and reconstruct the gross returns imposing Γδ = 0. Then, I estimate the IPCA

models and compute the Wald-like statistics, Ŵδ. Finally, I repeat this process for 1000

bootstrapping samples. The p-value is calculated as the fraction of sample Ŵδ that is larger

than the true Wδ. The bootstrapping p-values are reported in percentages in the last row

of Panel A in Table 10. Since they are all above 5%, I cannot reject the null: Γδ = 0 at the

5% significance level. Surprisingly, the testing results show that the zero-beta rates in IPCA

models are statistically zero with 6 or more factors. My intuition is that the latent factors

together with the dynamics of time-varying risk loadings are already sufficient to explain the

variations in the cross-section of gross returns, completely subsuming the zero-beta rate.

In KPS, the zero-beta rate is restricted to be the 1-month Treasury yield and IPCA is

operating on excess returns. I manually construct excess returns with random zero-beta

rates. No matter what the zero-beta rate is, IPCA will eventually produce some latent

factors and time-varying betas that nicely price the cross-section of the constructed excess

returns. Above all, I conclude that the IPCA models are inconsistent with the factor model

theories in the sense that they are not able to feature a unique zero-beta rate.

To further validate this argument, I run IPCA models on a simulated sample of gross re-

turns. First, I create an artificial zero-beta rate which is assumed to be a linear function of the

6 macroeconomic predictors: rz,t = a′Yt, where a = [0.007, 1,−0.1, 1,−0.005, 0.0002, 0.001].

Next, I simulate the individual gross stock returns by Rt+1 = rz,t+βtFt+1 = rz,t+ZtΓβFt+1.

To make the simulated sample as close to the real data as possible, I use the estimated 9

latent factors (Ft+1) and their estimated risk loadings (Γβ) from running IPCA on the KPS

data sample. I also use the real-life firm characteristics (Zt) in simulation. The idiosyncratic

noise term εt+1 is omitted for simplicity. Panel B of Table 10 reports the same R2’s for IPCA

models at different aggregation levels in the simulated sample. As is expected, IPCA models

perform very well at the level of both individual stocks and managed portfolios. With 9

or more factors, the model performances do not change because the simulated data only

features 9 latent factors. Again, I test the null hypothesis H0 : Γδ = 0 and find that all

the p-values are above 5%, failing to reject the null at 5% significance level. Even if the

simulated data is well structured and the IPCA models perform well according to the total

and predictive R2, the IPCA approach cannot recover the unobserved zero-beta rate.

The IPCA approach does its best to explain the variations in the cross-section of gross
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returns, leaving no space for the zero-beta rate if I leave the zero-beta rate unrestricted. That

said, I am not denying the contributions of IPCA in empirical asset pricing models. If I am

willing to assume a unique zero-beta rate (e.g., the 1-month Treasury yield), IPCA models

are able to improve the cross-sectional pricing of excess returns. However, my results show

that (i) IPCA factor models are inherently inconsistent with factor model theories regarding

the zero-beta rate, and (ii) the IPCA approach cannot help to estimate the zero-beta rate.

5. Conclusion

In this paper, I revisit the estimation of the zero-beta rate and find that existing methods

(the Fama-MacBeth approach and the zero-beta-portfolios approach from Di Tella et al.

(2023)) tend to produce high and volatile zero-beta rates. I argue that the high level and

volatility of the estimated zero-beta rate arise from two channels: model misspecification and

errors-in-variables. First, I show in theory that model misspecification leads to multiplicity

of the zero-beta rate. This indeterminacy may be a major factor in increasing the mean and

volatility of the estimated zero-beta rate. In the simulation analysis, I confirm that both

channels are quantitatively nontrivial. The literature has been making progress because

the newer zero-beta-portfolio approach is less prone to model misspecification and errors-

in-variables than the traditional Fama-MacBeth approach. My results, however, call for

caution when I estimate and interpret the zero-beta rate using either approach. For example,

it may not be appropriate to interpret the estimated zero-beta rate as the true risk-free

rate if I do not systematically rule out the two channels above. In the meantime, the

theoretical link between model misspecification and multiplicity of the zero-beta rate provides

a new perspective on evaluating factor models. I develop statistical tests that examine

whether a factor model implies a unique zero-beta rate. Based on this new perspective,

prominent factor models (either Fama-French style models or PCA-based models) may be

inherently misspecified. Conventional tests such as the Fama-MacBeth process are valid if

I want to understand whether a particular risk factor is priced in the cross-section of asset

returns. However, in other exercises that require factor models to be correctly specified

such as estimating the zero-beta rate, I argue that it may be important to consider the new

perspective regarding the uniqueness of the zero-beta rate.
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Appendix A. Additional Analysis

A.1. 8 Factor Models

The fundamental equation for risk premium—E [Ri] − rz = −rzCov(m,Ri)—tells us

that the key object in studying risk premium is the covariance term Cov(m,Ri). Note that

rz ≡ 1/E[m] is the zero-beta rate. However, the covariance term is generally impossible to

compute because of the extremely high dimension of the calculation. This is where factor

models kick in because they essentially reduce the dimension and make the problem tractable.

A general factor model has the following beta pricing formula:

E [R]− rz = −rzCov (R,m) = β · λ = Cov (R,F ) Σ−1
F · λ︸ ︷︷ ︸

dimension reduction

(A.1)

where R ∈ RN is a vector of returns for all N risky assets, β is a N×K matrix capturing the

exposure of N assets to a set of K risk factors, λ is a K×1 matrix capturing the prices of K

risk factors or factor risk premiums. By the projection theory, β = Cov (R,F ) Σ−1
F , where

F = {f1, f2, ..., fK} are the factors and ΣF denotes the covariance matrix for the factors.

This section reviews the 8 prominent factor models studied in this paper. Specifically,

I will briefly describe the model function, key intuition, data sources, sample period, etc.

for each factor model. I use the same set of testing portfolios in this paper since I would

like to compare the model performances with the same set of anomalies. Specifically, I use

135 testing portfolios consisting of 25 portfolios sorted by size and book-to-market sorted

portfolios, 25 portfolios sorted by size and operating profitability, 25 portfolios sorted by size

and investment, 25 portfolios sorted by size and momentum, 25 portfolios sorted by size and

market beta, and 10 industry portfolios. These testing portfolios can be downloaded from

Kenneth French’s website.

A.1.1. CAPM

The capital asset pricing model (Sharpe, 1964; Lintner, 1965) remains to be one of the

most popular tools in academia and the business industry due to its simplicity and beautiful

intuition. CAPM is a single-factor model where the market risk is assumed to be the only

source of systematic risk. The beta-pricing formula for CAPM is:

E [Rt+1]− rz,t = βmktλmkt,t+1 (A.2)

where rz,t is the zero-beta rate and λmkt,t+1 is the market factor risk premium. The market

returns come from Kenneth French’s website.. The data sample ranges from July 1963 to
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December 2023.

A.1.2. D-CCAPM

The consumption capital asset pricing model (CCAPM) is an extension of CAPM that

emphasizes the consumption risk instead of the market risk to explain the risk premium. It

replaces the market beta with the consumption beta in the model specification. Introduced

since Breeden (1979), there have been multiple versions of CCAPM proposed in the literature,

among which I choose the Yogo (2006) model. It highlights the cyclical role of durable

consumption in addition to non-durable consumption in asset pricing, and thus I label it as

D-CCAPM. The beta-pricing formula for D-CCAPM is:

E [Rt+1]− rz,t = βmktλmkt,t+1 + βcg−ndgλcg−ndg,t+1 + βcg−dgλcg−dg,t+1 (A.3)

where λcg−ndg,t+1 the risk premium of the non-durable consumption risk factor (growth rate

of real per capita non-durable consumption) and λcg−dg,t+1 is the risk premium of the durable

consumption risk factor (growth rate of real per capita durable consumption). Both con-

sumption series are seasonally adjusted at annual rates, downloaded from the Bureau of

Economic Analysis (BEA). Following Vissing-Jørgensen and Attanasio (2003) and Kan et al.

(2013), I linearly interpolate the quarterly consumption series into monthly series so that

the model estimation is at the monthly frequency consistent with other factor models. The

data sample ranges from July 1963 to December 2023.

A.1.3. FF3

The Fama-French three-factor model (Fama and French, 1993) extends the CAPM by

adding two factors: size and book-to-market ratio. These two factors are motivated by

empirically observing that (1) small stocks tend to outperform large stocks and (2) value

stocks tend to outperform growth stocks. The beta-pricing formula for FF3 is:

E [Rt+1]− rz,t = βmktλmkt,t+1 + βsmbλsmb,t+1 + βhmlλhml,t+1 (A.4)

where λsmb,t+1 is the risk premium of the size factor (the excess return of small-minus-big

long-short portfolio) and λhml,t+1 is the risk premium of the value factor (the excess return of

high-minus-low long-short portfolio). These factor returns can be downloaded from Kenneth

French’s website. The data sample ranges from July 1963 to December 2023.
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A.1.4. FF6+BAB

Fama and French (2015) and Fama and French (2018) extend the classic Fama-French

three-factor model to five-factor and six-factor models. The three additional factors are

related to operating profitability, investment, and momentum (Efficiency, 1993). They are

empirically motivated by the facts that (1) firms with robust profitability tend to outperform

firms with weak profitability, (2) firms with conservative investment tend to outperform

firms with aggressive investment, and (3) past winners tend to outperform past losers. I

also include a betting-against-beta factor (BAB) proposed by Frazzini and Pedersen (2014)

as high market beta stocks tend to earn lower risk-adjusted returns than low market beta

stocks. The beta-pricing formula for this seven-factor model (FF6+BAB) is:

E [Rt+1]− rz,t = βmktλmkt,t+1 + βsmbλsmb,t+1 + βhmlλhml,t+1 + βrmwλrmw,t+1

+ βcmaλcma,t+1 + βumdλumd,t+1 + βbabλbab,t+1

(A.5)

where λrmw,t+1 is the risk premium of the profitability factor (the excess return of robust-

minus-weak profitability long-short portfolio), λcma,t+1 is the risk premium of the investment

factor (the excess return of conservative-minus-aggressive investment long-short portfolio),

λumd,t+1 is the risk premium of the momentum factor (the excess return of up-minus-down

long-short portfolio), and λbab,t+1 is the risk premium of the BAB factor (the excess return

of low-beta-minus-high-beta long-short portfolio). These factor returns can be downloaded

from Kenneth French’s website. The data sample ranges from July 1963 to December 2023.

A.1.5. Q5

Production-based asset pricing models claim that productivity shocks are related to the

changes in the firm investment opportunity set, and thus should be priced in stock returns.

Hou et al. (2015) shows that an investment-to-asset factor and a return-on-equity factor

are associated with productivity shocks. In Hou et al. (2021), the authors augment the

previous q-factor model with an expected growth factor. The beta-pricing formula for the

new five-factor, which I label as Q5, is:

E [Rt+1]− rz,t = βmktλmkt,t+1 + βmeλme,t+1 + βiaλia,t+1 + βroeλroe,t+1 + βegλeg,t+1 (A.6)

where λme,t+1 is the same size factor risk premium as λsmb,t+1, λia,t+1 is the risk premium

of the investment factor (the excess return of firms with low versus high levels of new in-
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vestments), λroe,t+1 is the risk premium of the profitability factor (the excess return of firms

with high versus low ROE), and λeg,t+1 is the risk premium of the expected growth factor

(the excess return of firms with high versus low expected growth). These factor returns can

be downloaded from Lu Zhang’s website. The data sample ranges from January 1967 to

December 2023.

A.1.6. LIQ

Pástor and Stambaugh (2003) augments the Fama-French three-factor model with a

liquidity factor to capture the idea that asset returns are closely related to market-wide

liquidity. The aggregate market liquidity is measured as the cross-sectional average of indi-

vidual stocks’ liquidity measures. The beta-pricing formula for the four-factor model, which

I label as LIQ, is:

E [Rt+1]− rz,t = βmktλmkt,t+1 + βsmbλsmb,t+1 + βhmlλhml,t+1 + βliqλliq,t+1 (A.7)

where λliq,t+1 is the risk premium of the liquidity factor (the excess return of a long-short

portfolio that long stocks that are more sensitive to liquidity shocks and short stocks that

are less sensitive to liquidity shocks). The liquidity factor returns can be downloaded from

Robert Stambaugh’s website. The data sample ranges from January 1968 to December 2023.

A.1.7. DUR

Gormsen and Lazarus (2023) shows that the premia on a number of equity risk factors

(value, profitability, investment, etc.) can be explained by a single duration factor. The

intuition is that these risk factors are essentially constructed by investing in stocks with

lower duration and selling stocks with higher duration. Hence, the near-future premium can

summarize all these factors. They proceed to propose a three-factor model which I label as

DUR. The beta-pricing formula for DUR is:

E [Rt+1]− rz,t = βmktλmkt,t+1 + βsmbλsmb,t+1 + βdurλdur,t+1 (A.8)

where λdur,t+1 is the risk premium of the duration factor (the excess return of a low-duration-

minus-high-duration long-short portfolio). The duration factor returns can be replicated

following the instructions in the original paper as well as Weber (2018). Or they can be

downloaded from the Global Factor Data website built by Jensen et al. (2023). The data

sample ranges from July 1963 to December 2023.
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A.1.8. INM

The last type of models I consider is the intermediary-based asset pricing models (Adrian

et al., 2014; He et al., 2017). The key idea is that households may not be the marginal

investors of financial assets, and thus household consumption may not be the only source of

systematic risk in asset pricing. On the contrary, financial intermediaries are sophisticated

and actively participate in the financial markets. It is reasonable to believe that intermediary

balance sheets contain additional information about the pricing of the financial assets. The

intermediary-based model used in this paper is from He et al. (2017), which I label as INM.

The beta-pricing formula for INM is:

E [Rt+1]− rz,t = βmktλmkt,t+1 + βsmbλsmb,t+1 + βhmlλhml,t+1 + βinmλinm,t+1 (A.9)

where λinm,t+1 is the risk premium of the intermediary capital risk factor (AR(1) innovations

to the market-based capital ratio of primary dealers). The intermediary capital risk factor

returns can be downloaded from Zhiguo He’s website. The data sample ranges from January

1970 to December 2023.

A.2. Zero-Beta Rates Estimated using the Fama-MacBeth Approach

Figure A.1 shows the monthly time series of the zero-beta rate estimated using the

Fama-MacBeth approach for all 8 prominent factor models. Table A.1 reports the summary

statistics of these estimated zero-beta rates. In Panel A, µz is the mean of the estimated

zero-beta rate, and µz/µy is the ratio between the mean of zero-beta rate and the mean

of 1-month Treasury yield. In Panel B, σz is the volatility of the estimated zero-beta rate

and σz/σy is the ratio between the volatility of the zero-beta rate and the volatility of the

1-month Treasury yield. Panel C reports the correlation matrix of the 8 zero-beta rates.

Summarizing over all the 8 models, the zero-beta rate estimated by Fama-MacBeth is on

average 3.0 times higher in level and 18.2 times more volatile than the Treasury yield. The

correlation of estimated zero-beta rates across all 8 models is on average 0.57. In summary,

the high level and high volatility of the estimated zero-beta rate is ubiquitous in all prominent

factor models.

A.3. An Iterative Fama-MacBeth Procedure

To alleviate the concern of inconsistent return units in regression (1) for the Fama-

MacBeth approach, this section provides an iterative Fama-MacBeth procedure:
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Figure. A.1. Estimated Zero-Beta Rates (Fama-MacBeth)
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Notes: This figure shows the monthly time series of the zero-beta rate estimated using the
Fama-MacBeth approach for all 8 prominent factor models, in monthly percentages. The blue
lines are the estimated zero-beta rates. The red lines are the 1-month US Treasury bill yields.
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Table A.1: Estimated Zero-Beta Rates (Fama-MacBeth)

CAPM D-CCAPM FF3 FF6+BAB Q5 LIQ DUR INM

Panel A: Mean

µz 13.96 11.92 16.50 8.78 5.34 16.43 18.11 11.88

µz/µy 3.21 2.74 3.79 2.02 1.22 3.75 4.16 2.74

Panel B: Volatility

σz 63.14 72.63 56.46 57.71 52.33 56.50 57.02 53.87

σz/σy 19.82 22.80 17.72 18.11 15.79 17.09 17.90 16.07

Panel C: Correlation Matrix

CAPM 1.00

D-CCAPM 0.97 1.00

FF3 0.55 0.43 1.00

FF6+BAB 0.19 0.12 0.46 1.00

Q5 0.31 0.24 0.57 0.73 1.00

LIQ 0.55 0.43 0.99 0.41 0.53 1.00

DUR 0.63 0.48 0.98 0.41 0.50 0.97 1.00

INM 0.45 0.34 0.83 0.61 0.76 0.77 0.77 1.00

Notes: This table reports the summary statistics of the estimated zero-beta rates for 8 prominent
factor models using the Fama-macBeth approach. In Panel A, µz is the annualized mean of the
estimated zero-beta rate and, µz/µy is the ratio between the mean of zero-beta rate and the mean
of 1-month Treasury yield. In Panel B, σz is the annualized volatility of the estimated zero-beta
rate and σz/σy is the ratio between the volatility of the zero-beta rate and the volatility of the
1-month Treasury yield. Panel C reports the correlation matrix of the 8 zero-beta rates.

i. Guess the time series of the zero-beta rate, denoted as r
(0)
z,t (I use the 1-month Treasury

yield as the initial guess).

ii. Run the following time series regression for each test asset to estimate the betas:

Ri,t+1 − r
(0)
z,t = αi + βM,i

(
RM,t+1 − r

(0)
z,t

)
+

K∑
k=2

βk,ifk,t+1 + εi,t+1 (A.10)

iii. Run the cross-sectional regressions (2) at each date to update the zero-beta rate, de-

noted as r
(1)
z,t .

iv. Iterate steps i to iii until rz,t converges or until beta estimates converge.

Summarizing over all the 8 models, the zero-beta rate estimated by Fama-MacBeth is
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Table A.2: Estimated Zero-Beta Rates (Iterative Fama-MacBeth)

CAPM D-CCAPM FF3 FF6+BAB Q5 LIQ DUR INM

Panel A: Mean

µz 10.37 10.03 21.15 10.88 11.56 21.56 21.54 22.04

µz/µy 2.38 2.30 4.86 2.50 2.64 4.92 4.95 5.08

Panel B: Volatility

σz 79.66 84.40 66.39 80.19 72.66 69.52 64.07 71.20

σz/σy 25.00 26.49 20.84 25.17 21.92 21.03 20.11 21.24

Panel C: Correlation Matrix

CAPM 1.00

D-CCAPM 1.00 1.00

FF3 0.28 0.26 1.00

FF6+BAB -0.04 -0.06 0.12 1.00

Q5 -0.06 -0.08 0.51 0.69 1.00

LIQ 0.30 0.29 0.99 -0.00 0.43 1.00

DUR 0.34 0.32 0.97 0.11 0.43 0.96 1.00

INM 0.26 0.25 1.00 0.09 0.49 0.99 0.97 1.00

Notes: This table reports the summary statistics of the estimated zero-beta rates for 8 prominent
factor models using the iterative Fama-macBeth approach. In Panel A, µz is the annualized mean
of the estimated zero-beta rate, and µz/µy is the ratio between the mean of zero-beta rate and
the mean of 1-month Treasury yield. In Panel B, σz is the annualized volatility of the estimated
zero-beta rate and σz/σy is the ratio between the volatility of the zero-beta rate and the volatility
of the 1-month Treasury yield. Panel C reports the correlation matrix of the 8 zero-beta rates.

on average 3.7 times higher in level and 22.7 times more volatile than the Treasury yield.

Figure A.2 shows the estimated zero-beta rate in all 8 factor models. Table A.2 reports the

mean and standard deviations for each zero-beta rate series and shows that the correlation

of estimated zero-beta rates across all 8 models is on average 0.42. Obviously, the iterative

procedure does not essentially affect the results in the main text.

A.4. Zero-Beta Rates Estimated using the Zero-Beta-Portfolio Approach

Figure A.3 shows the monthly time series of the zero-beta rate estimated using the zero-

beta-portfolio approach from DHKW for all 8 prominent factor models. Table A.3 reports

the summary statistics of these estimated zero-beta rates. In Panel A, µz is the mean of the
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Figure. A.2. Estimated Zero-Beta Rates (Iterative Fama-MacBeth)
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Notes: This figure shows the monthly time series of the zero-beta rate estimated using the
iterative Fama-MacBeth approach for all 8 prominent factor models, in monthly percentages. The
blue lines are the estimated zero-beta rates. The red lines are the 1-month US Treasury bill yields.
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Figure. A.3. Estimated Zero-Beta Rates (DHKW)
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Notes: This figure shows the monthly time series of the zero-beta rate estimated using the
zero-beta-portfolio approach from DHKW for all 8 prominent factor models, in monthly
percentages. The blue lines are the estimated zero-beta rates. The red lines are the 1-month US
Treasury bill yields.
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Table A.3: Estimated Zero-Beta Rates (DHKW)

CAPM D-CCAPM FF3 FF6+BAB Q5 LIQ DUR INM

Panel A: Mean

µz 11.52 11.82 11.78 11.17 9.18 11.76 12.10 11.02

µz/µy 2.65 2.72 2.71 2.57 2.10 2.68 2.78 2.54

Panel B: Volatility

σz 5.90 5.71 5.84 5.98 6.38 6.60 5.97 6.89

σz/σy 1.85 1.79 1.83 1.88 1.92 2.00 1.87 2.05

Panel C: Correlation Matrix

CAPM 1.00

D-CCAPM 0.98 1.00

FF3 0.99 0.99 1.00

FF6+BAB 0.94 0.89 0.93 1.00

Q5 0.91 0.91 0.93 0.89 1.00

LIQ 0.99 0.99 1.00 0.91 0.94 1.00

DUR 1.00 0.99 0.99 0.93 0.91 0.99 1.00

INM 0.99 0.98 1.00 0.94 0.94 0.99 0.99 1.00

Notes: This table reports the summary statistics of the estimated zero-beta rates for 8 prominent
factor models using the zero-beta-portfolio approach from DHKW. In Panel A, µz is the
annualized mean of the estimated zero-beta rate and µz/µy is the ratio between the mean of
zero-beta rate and the mean of 1-month Treasury yield. In Panel B, σz is the annualized volatility
of the estimated zero-beta rate and σz/σy is the ratio between the volatility of zero-beta rate and
the volatility of 1-month Treasury yield. Panel C reports the correlation matrix of the 8 zero-beta
rates.

estimated zero-beta rate, and µz/µy is the ratio between the mean of zero-beta rate and the

mean of 1-month Treasury yield. In Panel B, σz is the volatility of the estimated zero-beta

rate and σz/σy is the ratio between the volatility of the zero-beta rate and the volatility of

the 1-month Treasury yield. Panel C reports the correlation matrix of the 8 zero-beta rates.

Summarizing over all the 8 models, the zero-beta rate estimated by Fama-MacBeth is on

average 2.6 times higher in level and 1.9 times more volatile than the Treasury yield. The

correlation of estimated zero-beta rates across all 8 models is on average 0.96. In summary,

the high level and high volatility of the estimated zero-beta rate is ubiquitous in all prominent

factor models.
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Table A.4: Predictive Regression Results (DHKW)

Const Y1M INFL TMS UMP CAPE CSP R2

Coefficient 0.68 2.58 -2.15 2.88 -0.09 0.01 -0.69 2.50

t-statistics 0.63 3.67 -2.95 2.03 -0.86 0.39 -0.17

Notes: This table reports the point estimates and t-statistics for coefficients of the predictive
regression in the zero-beta-portfolio approach from DHKW. This regression predicts the realized
return of the minimum-variance zero-beta portfolio using a constant term and 6 macroeconomic
variables: Y1M (1-month Treasury yield), INFL (rolling average of the previous twelve-month
inflation), TMS (term spread), UMP (unemployment rate), CAPE, and CSP (corporate bond
spread). Predictive R2 is also reported in percentages.

A.5. Prediction of the Minimum-Variance Zero-Beta Portfolio Returns

Table A.4 reports the point estimates and t-statistics for coefficients of the predictive

regression in the zero-beta-portfolio approach from DHKW. This regression predicts the

realized return of the minimum-variance zero-beta portfolio using 6 macroeconomic variables

plus a constant term. Y1M , INFL, and TMS are significantly different from zero. The signs

of their coefficients are consistent with DHKW. The predictive R2 is 2.5%.

A.6. Testing for the Uniqueness of the Zero-Beta Rate

As explained in section 3.2, I propose two tests for the uniqueness of the zero-beta rate.

The first test uses Fama-MacBeth time series regressions to generate N × (N − 1) separate

tests and F-statistics. Figure A.4 plots the histogram of N × (N − 1) F-statistics for the 8

factor models. The red vertical dashed lines represent the critical values of the F distributions

with degrees of freedom 1 and N −K − 1 with a 5% significance level. The probabilities of

rejection are all higher than the 5% significance threshold, indicating that all the 8 factor

models are rejected based on this test. The second test constructs a large number of random

zero-beta portfolios and checks whether their expected returns are statistcally equalized.

Figure A.5 plots the constructed zero-beta portfolios around the minimum-variance zero-

beta portfolio in the mean-standard deviation space for all 8 factor models. The red dots

Z∗ represent the minimum-variance zero-beta portfolios. The blue dots denote the random

zero-beta portfolios. All tests have the ANOVA p-values of 0.00, indicating that all the 8

factor models are rejected based on this test.
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Figure. A.4. Histogram of F-Statistics
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Notes: This figure plots the histogram of N × (N − 1) F-statistics in the Fama-MacBeth time
series regression tests for all 8 factor models. The red vertical dashed lines represent the critical
values of the F distributions with degrees of freedom 1 and N −K − 1 with a 5% significance level.
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Figure. A.5. Constructed Zero-Beta Portfolios
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Notes: This figure plots the constructed zero-beta portfolios around the minimum-variance
zero-beta portfolio in the mean-standard deviation space for all 8 factor models. The red dots Z∗

represent the minimum-variance zero-beta portfolios. The blue dots denote the random zero-beta
portfolios.
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Appendix B. Proofs

B.1. Portfolio Weights of the Minimum-Variance Zero-Beta Portfolio

This section proves the analytical formula for the portfolio weights of the minimum-

variance zero-beta portfolio in equation (4). After estimating the variance-covariance matrix

of the asset returns, ΣR, I solve the following variance minimization problem:

min
ω

ω′ΣRω

s.t. ω′β = 0⃗

s.t. ω′ι = 1

(B.1)

where ω is an N × 1 vector of portfolio weights, β is an N × K matrix of estimated risk

loading, 0⃗ is a 1×K vector of zeros, and ι is an N × 1 vector of ones. N is the number of

asset returns and K is the number of factors.

Set up the Lagrangian equation with multipliers λ1,(K×1) and λ2,(1×1):

L = ω′ΣRω − 2ω′βλ1 − 2ω′ιλ2 (B.2)

The F.O.C. with respect to ω is:

ΣRω = βλ1 + λ2ι =
[
ι β

] [λ2

λ1

]
(B.3)

Pre-multiply equation (B.3) by

[
ι′

β′

]
Σ−1

R and use the two constraints, I get:

[
ι′

β′

]
ω =

[
1

0⃗

]
=

[
ι′

β′

]
Σ−1

R

[
ι β

] [λ2

λ1

]
(B.4)

=⇒

[
λ2

λ1

]
=

([
ι′

β′

]
Σ−1

R

[
ι β

])−1 [
1

0⃗

]
(B.5)

Substituting (B.4) into (B.3):

ω = Σ−1
R

[
ι β

]([ ι′
β′

]
Σ−1

R

[
ι β

])−1 [
1

0⃗

]
(B.6)
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B.2. Proof of Proposition 1

In this proof, I assume the factors are either returns or excess returns. This is without

loss of generality because any non-return factors can be projected onto the span of returns

and obtain the factor-mimicking portfolio returns.

Proof of (i):

First, I look at the identities of the factor risk premiums λ. If a factor fj is a return, then I

plug fj in equation (A.1) and get: E [fj]−rz = Cov(fj, F )Σ−1
F λ. Notice that fj is one element

in F , thus Cov(fj, F )Σ−1
F turns out to be a vector with 1 on the jth location and 0 everywhere

else. Hence, Cov(fj, F )Σ−1
F λ = λj and the ith factor risk premium is: λj = E [fj] − rz.

Alternatively, if a factor fj is an excess return, I assume fj = Rj
1 −Rj

2. Substituting returns

Rj
1 and Rj

1 = Rj
2 + fj into equation (A.1) separately generates the following two equations:

E [R2 + fj]− rz = Cov (R2 + fj, F ) Σ−1
F · λ and E [R2]− rz = Cov (R2, F ) Σ−1

F · λ. Take the

difference I get: E [fj] = Cov(fj, F )Σ−1
F λ = λj. That is, the jth factor risk premium is:

λj = E [fj]. Suppose I have k̄ return factors and K − k̄ excess return factors, the factor

model can be written as follows, for any return Ri ∈ R:

E [Ri]− rz =
k̄∑

j=1

βj,i (E [fj]− rz) +
K∑

j=k̄+1

βj,iE [fj] (B.7)

To prove (i), suppose there are two zero-beta rates, rz1 and rz2 , that satisfy the factor

model equation (B.7). Then for any return Ri ∈ R:

E [Ri]− rz1 =
k̄∑

j=1

βj,i (E [fj]− rz1) +
K∑

j=k̄+1

βj,iE [fj] (B.8)

E [Ri]− rz2 =
k̄∑

j=1

βj,i (E [fj]− rz2) +
K∑

j=k̄+1

βj,iE [fj] (B.9)

Take the difference I get:

(rz1 − rz2) =
k̄∑

j=1

βj,i (rz1 − rz2) ⇔ (rz1 − rz2)

(
1−

k̄∑
j=1

βj,i

)
= 0 (B.10)

Since this equality holds for all asset i, it is almost surely not possible that 1−
k̄∑

j=1

βj,i = 0.

Therefore, it must be that rz1 = rz2 . That is, the zero-beta rate rz is unique with a factor
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model structure. Then, I can rearrange equation (B.7) to solve for rz:

rz =

E [Ri]−
K∑
j=1

βj,iE [fj]

1−
k̄∑

j=1

βj,i

(B.11)

If the factor model is correctly specified, equation (B.11) should hold for any return

Ri ∈ R. This is a strong structure imposed by the factor model on the data and the factors.

That every asset should have this property can be used to test the factor model. Obviously,

different factors imply different values of zero-beta rates.

Alternative proof of (i):

Asset pricing theories are based on the stochastic discount factor (SDF) framework: for

any asset return Ri, I have 1 = E [mRi]. When a risk-free asset is not traded, I usually

augment the payoff space with a hypothetical unit payoff and assign an arbitrary price for

this unit payoff (Hansen and Jagannathan, 1991). Define ν ≡ p(1) = E [m] to be the price of

hypothetical unit payoff and also the mean of SDF. The zero-beta portfolios, Rz, are orthog-

onal to the SDF. Then, I have 1 = E [mRz] = Cov(m,Rz) + E [m]E [Rz] = E [m]E [Rz].

The zero-beta rate is defined to be the expected return of the zero-beta portfolios: rz =

E [Rz] = 1/E [m] = 1/ν.

Once I define the mean of SDF, 1 = E [mRi] implies E [Ri]− rz = −rzCov(m,Ri). This

is the fundamental equation for risk premium with respect to rz. When a risk-free asset

exists, rz = rf . However, when the risk-free asset does not exist, this asset pricing equation

holds for any value of ν. To put it in another way, for any arbitrarily assigned ν, I have a

pair of the zero-beta rate, rz, and the mean of SDF, E [m], that can be used to price assets.

To find an SDF that prices all assets and the hypothetical unit-payoff asset, I project

potential SDFs onto the span of returns20 and a constant with the previous definition E [m] =

ν. Assume the unique projected SDF m∗
ν = α+ βR where R is the return vector of all risky

assets. By the projection theory, α = E [m]− βE [R] and β = Cov(m,R)V ar(R)−1. Denote

the mean vector of returns as µ, the covariance matrix of returns as Σ, and a unit vector ι.

Also notice that Cov(m,R) = E [mR′]− E [m]E [R′] = (ι− νµ)′. I have:

m∗
ν = ν − βµ+ βR = ν + β (R− µ)

= ν + (ι− νµ)′Σ−1 (R− µ)
(B.12)

In summary, for any arbitrarily assigned ν = 1/E [m] = 1/rz, I can find a unique SDF

20The span of returns is equivalent to the span of payoffs.
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m∗
ν that satisfies E [Ri] − rz = −rzCov(m,Ri) and is able to price all risky assets and the

hypothetical risk-free asset. It is written with a subscript ν to emphasize the point that it

is defined up to an assigned value of ν. I think the main takeaway here is that the zero-beta

rate is generally not uniquely identified. That is to say, it is not possible to compute “the”

unique zero-beta rate without imposing further structures on the data in a world where no

risk-free assets are traded. This argument is not surprising because I have not defined what

risks are, hence I am probably not able to define a unique “risk-free” rate proxied by a unique

zero-beta rate. Naturally, I move on to factor models where risks are clearly defined by the

risk factors.

According to equation (B.12), there is a unique SDF in the span of returns and a constant:

m∗
ν = ν+(ι−νµ)′Σ−1 (R− µ). In the meantime, I know that a factor model is equivalent to

a linear specification of the SDF21: m̃ = 1/rz ·
(
1− λ′Σ−1

F (F − µF )
)
where µF denotes the

mean of factors. Because the factors are either returns or excess returns, m̃ is also a linear

function of returns, excess returns, and a constant. That is, m̃ is in the span of payoffs and

a constant. Finally, since the span of returns is equivalent to the span of payoffs, it must

be that m∗
ν = m̃. Hence, ν + (ι − νµ)′Σ−1 (R− µ) = 1/rz ·

(
1− λ′Σ−1

F (F − µF )
)
. In the

previous proof of (i), I looked at the identities of the factor risk premiums. My results allow

us to write λ = µF − rzη where η is a vector of 1’s and 0’s. ηj = 1 when fj is a return factor;

ηj = 0 when fj is an excess return factor. With ν = 1/rz, I can solve for rz:

rz =
µ′Σ−1 (R− µ)− µ′

FΣ
−1
F (F − µF )

ι′Σ−1 (R− µ)− η′Σ−1
F (F − µF )

(B.13)

Clearly, this is valid if the denominator ι′Σ−1 (R− µ) − η′Σ−1
F (F − µF ) ̸= 0, which is

true almost surely. Equation (B.13) delivers the same implications as equation (B.11), the

zero-beta rate is fixed in a factor model structure, and different sets of factors produce dif-

ferent values of zero-beta rates. Intuitively, risks are well defined by the risk factors in a

factor model, which helps uniquely identify the zero-beta rate.

Proof of (i) and (ii) following Roll (1980):

to be added

21The proof can be found in Cochrane (2009) and Back (2010).
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B.3. Proof of Equation (6)

For a general factor model, suppose that E [R] − rz = β · λ = Cov (R,F ) Σ−1
F · λ where

β ≡ Cov (R,F ) Σ−1
F is the risk loading. Define R̃ = λ′Σ−1

F F , then,

Cov(R, R̃) = Cov(R, λ′Σ−1
F F ) = Cov (R,F ) Σ−1

F λ = E [R]− rz (B.14)

For portfolio R̃,

Cov(R̃, R̃) = E[R̃]− rz = V ar(R̃) ⇒ E[R̃]− rz

V ar(R̃)
= 1 (B.15)

Substituting (B.15) into (B.14) I get:

E[R]− rz = Cov(R, R̃) =
Cov(R, R̃)

V ar(R̃)

(
E[R̃]− rz

)
≡ β̃λ̃ (B.16)

Hence, any factor model can be written as a single-factor model with factor R̃. This

completes the proof of equation (6).

The single factor return R̃ is on the mean-variance frontier because for any asset Ri s.t.

E [Ri] = E
[
R̃
]
, I will have:

σ(R̃)2 = V ar(R̃) = Cov(Ri, R̃) ≤ σ(Ri)σ(R̃) ⇒ σ(R̃) ≤ σ(Ri) (B.17)
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